تستفيد الخوارزميات الكمية من المبادئ الأساسية للديناميكا الكمية—مثل التراكب، والتشابك، والتداخل—لإجراء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح التراكب لوحدات البت الكمية (اليوبيتات) بالتمثيل المتزامن لحالات متعددة، ما يمكّن من استكشاف المسارات الحسابية بشكل متوازٍ. ويُدخل التشابك علاقات ارتباط بين اليوبيتات تتجاوز الحدود الكلاسيكية، مما يتيح توزيع المعلومات ومعالجتها بطريقة غير محلية. ثم يستخدم التداخل الكمي لتعزيز سعات الاحتمالات للنتائج الصحيحة مع إلغاء تلك الخاصة بالنتائج الخاطئة. على عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكسية (وحداتية)، وبسبب نظرية عدم النسخ، لا يمكنها نسخ حالات كمية عشوائية. وبالتالي، تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع البيانات المؤقتة أو تنظيم تدفقات الحساب. إن نتائج الخوارزميات الكمية احتمالية بطبيعتها، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب العديد من التشغيلات للحصول على إجابات ذات ثقة عالية. تعتمد العديد من الخوارزميات الكمية على أوراكل—دوال صندوق أسود خاصة—لتوجيه عمليات البحث أو اتخاذ القرارات، كما في خوارزمية غروفر. ويمكن لهذه الخوارزميات توفير تسريعات دراماتيكية: فخوارزمية غروفر توفر مكاسب تربيعية في مهام البحث، في حين تقدم خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وفقدان التماسك، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا جوهريًا في الحوسبة، حيث تستفيد من الموارد الكمية الفريدة لمعالجة المشكلات التي يصعب حلها باستخدام الأجهزة الكلاسيكية.