تستفيد الخوارزميات الكمية من المبادئ الأساسية للميكانيكا الكمية—مثل التراكب، والتشابك، والتداخل—لإجراء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح مبدأ التراكب للكيوبتات (وحدات البت الكمية) بتمثيل حالات متعددة في آنٍ واحد، مما يمكّن من استكشاف المسارات الحسابية بشكل متوازٍ. ويُدخل التشابك ارتباطات بين الكيوبتات تتجاوز الحدود الكلاسيكية، ما يتيح توزيع ومعالجة المعلومات بطريقة غير محلية. ثم يستخدم التداخل الكمي لتعزيز السعة الاحتمالية للنتائج الصحيحة مع إلغاء تلك الخاصة بالنتائج الخاطئة. وعلى عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكسية (وحدوية)، وبسبب نظرية عدم النسخ، لا يمكنها نسخ حالات كمية عشوائية. ونتيجة لذلك، تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع البيانات المؤقتة أو تنظيم تدفقات الحساب. إن نتائج الخوارزميات الكمية احتمالية بطبيعتها، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب تشغيلات متعددة للحصول على إجابات عالية الثقة. تعتمد العديد من الخوارزميات الكمية على الدعامات (أوراكل)—دوال صندوق أسود خاصة—لتوجيه عمليات البحث أو اتخاذ القرار، كما في خوارزمية غروفر. ويمكن لهذه الخوارزميات توفير تسريعات دراماتيكية: فخوارزمية غروفر توفر مكاسب تربيعية في مهام البحث، بينما تمنح خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وتفكك التماسك، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا نوعيًا في مجال الحوسبة، حيث تستغل موارد كمية فريدة لمعالجة المشكلات التي يصعب حلها باستخدام الأجهزة الكلاسيكية.