انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى محاضرات خبراء حول آخر التطورات في مجال تقاطع الذكاء الاصطناعي البصري مع الزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل الدخول عبر زووم.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وترميز سحب الليدار الحقيقية على نطاق واسع أمر مكلف ومستهلك للوقت، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم مشروع Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع يولد مجموعات بيانات واقعية ومُوسومة بالكامل مع أقل جهد بشري في التسمية. الفكرة الأساسية هي "تحليل الواقع" من خلال التقاط مسح الخلفية (مثل الحقول، الطرق، مواقع البناء) ومسح الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال الجمع الذكي بين هذين المصدرَين، يمكن لـ Paved2Paradise تركيب عدد كبير جدًا من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسوحات ليدار واسعة النطاق للخلفية، (2) تسجيل مسوحات عالية الدقة لكائنات مستهدفة في ظروف مضبوطة، (3) إدخال الكائنات في الخلفيات مع وضع وتحجب يتماشى مع القوانين الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتصل إلى أداء قوي في الكشف مع حاجة أقل بكثير للتسمية اليدوية مقارنة بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل مرنة أيضًا — مما يتيح للممارسين توسيع النموذج بسهولة إلى فئات أو مجالات كائنات جديدة عن طريق استبدال مسوحات الخلفية أو الكائنات. بالنسبة لممارسي التعلّم الآلي العاملين في الروبوتات، أو المركبات المستقلة، أو أنظمة الإدراك الحرجة للسلامة، فإن Paved2Paradise يسلط الضوء على مسار عملي نحو توسيع بيانات التدريب دون زيادة التكاليف. كما يسد الفجوة بين المحاكاة والأداء في العالم الحقيقي، مما يتيح التكرار السريع والنماذج أكثر موثوقية عند النشر. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي للتعلم الآلي في شركة جون دير، حيث يعمل على تطوير نماذج التعلم العميق للإدراك باستخدام الليدار والصور الملونة (RGB) في أنظمة حرجة للسلامة وتعمل في الزمن الحقيقي. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة الزمكانية، ويحمل أيضًا تخصصًا فرعيًا في الرياضيات. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind وGoogle وMeta وMicrosoft وOpenAI وغيرهم، وكانت ورقة \(batter\|pitcher\)2vec الخاصة به فائزة بجائزة في مؤتمر MIT Sloan Sports Analytics لعام 2018. كما ساهم برمجيًا في scikit\-learn وApache Solr، وقد تلقّت مستودعات GitHub الخاصة به، التي تجمعت لها أكثر من 2\,100 نجمة، دعمًا كنقاط بداية لأكواد بحثية وإنتاجية في العديد من المؤسسات المختلفة. **MothBox: جهاز رصد آفات منخفض التكلفة، مفتوح المصدر، وآلي** سيتحدث الدكتور آندي كويتماير عن تصميم أداة علمية جديدة ومثيرة مفتوحة المصدر، وهي Mothbox. يُعد مشروع Mothbox مشروعًا فائزًا بجائزة لرصد الحشرات على نطاق واسع من أجل التنوع البيولوجي. إنها أداة منخفضة التكلفة تم تطويرها في الغابات الصعبة ببنما، تلتقط صورًا فائقة الدقة ثم تقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات الحشرية ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن بصدد تطوير نسخة جديدة قابلة للتصنيع لنشارك هذه الأداة المهمة عالميًا. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتماير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة كرتون نتورك وIDEO وسميثسونيان، ودرّس كأستاذ دائم في الجامعة الوطنية السنغافورية، وحتى تم تحويل بحثه إلى سلسلة تلفزيونية (مضحكة) بعنوان "Hacking the Wild"، والتي تم توزيعها عبر شبكات ديسكفري. حالياً، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس مختبر المساحات الإبداعية في محطات الحقول، Digital Naturalism Laboratories. في غابة جامبوا الاستوائية في بنما، يدمج Dinalab بين العمل الميداني البيولوجي والصناعة التكنولوجية ضمن مجتمع من العلماء والفنيين والمهندسين وفناني والأشخاص المعنيين بإعادة تأهيل الحيوانات المحليين والدوليين. وحاليًا، يستمر أيضًا كأستاذ مشارك في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من أسلوب جديد لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذه المحاضرة، سأناقش أحدث الأبحاث حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب أو من خلال التعديل الدقيق (fine-tuning). على وجه التحديد، سأتناول عملًا مشتركًا حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلامات البصرية في مقاطع فيديو طويلة. لإزالة الحاجة إلى تدريب مخصص للمهمة ومعالجة مقاطع الفيديو الطويلة بكفاءة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج بصرية مسبقة التدريب. كما سأناقش عملًا مشتركًا حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الطلبات التي تتطلب فهمًا شاملاً مكانياً وزمنياً: فالنماذج MLLMs تواجه صعوبة في الإجابة على طلبات تشير إلى 1) البيئة بأكملها التي يمكن لوكيل مزوّد بنموذج MLLM العمل فيها؛ وفي نفس الوقت تشير أيضًا إلى 2) الإجراءات الحديثة التي حدثت للتو والمُشفرة في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني-الزماني مهم للوكلاء الذين يعملون في العالم الحقيقي. حلنا يتضمن تطوير خط أنابيب مخصص لجمع البيانات وتعديل نموذج MLLM مجهّز بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-แชมبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي والذكاء الاصطناعي التوليدي والرؤية الحاسوبية. حصل على درجة البكالوريوس والدبلوم في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية بميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. وبعد ذلك انضم إلى جامعة تورونتو كزميل باحث حتى عام 2016. تتمحور اهتماماته البحثية حول الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية حول فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. وقد مُنحت أطروحته للدكتوراه وسام ETH، وحاز بحث فريقه على جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ ثورة في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات في وقت مبكر بما يكفي لصنع فرق حقيقي؟ توضح هذه المحاضرة كيف يحدد كشف الشذوذ مشكلات المحاصيل ويحددها بدقة باستخدام صحة أوراق البن كمثال أساسي. سنبدأ بالنظرية الأساسية، ثم نحلل كيف تكتشف هذه النماذج صدأ الورقة أو أضرار المنشار في الصور. تشمل الجلسة سير عمل شاملاً عمليًا باستخدام مجموعة أدوات الرؤية الحاسوبية مفتوحة المصدر FiftyOne، تغطي تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وتجربة عملية في تطبيق هذه الأساليب على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 سنة من الخبرة في المجال التكنولوجي. تعمل على تطوير تقنيات هندسية متكاملة جديدة، خصوصًا في مجالات الرؤية الحاسوبية، والروبوتات، والتعلم الآلي المطبّق على الزراعة، منذ أوائل العقد الأول من القرن الواحد والعشرين في كولومبيا.