انضم إلينا في اليوم الأول من سلسلة فعاليات افتراضية للاستماع إلى محادثات خبراء حول أحدث التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل الدخول عبر زووم.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع من أجل الإدراك في العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج إدراك قوية للروبوتات والاستقلالية بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وترميز سحب ليدار من العالم الحقيقي بحجم كبير أمر مكلفٌ وطويل، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم Paved2Paradise بديلاً اقتصاديًا: خط أنابيب محاكاة ليدار قابل للتوسيع لإنشاء مجموعات بيانات واقعية ومُوسومة بالكامل مع الحد الأدنى من الجهد البشري في التسمية. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح الخلفية (مثل الحقول، الطرق، مواقع البناء) ومسح الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise تصنيع عدد كبير من مشاهد التدريب المتنوعة. يشمل خط الأنابيب أربع خطوات: (1) جمع مسح ليدار خلفي واسع النطاق، (2) تسجيل مسح عالي الدقة لكائنات مستهدفة في ظروف مضبوطة، (3) إدخال الكائنات داخل الخلفيات مع وضع وحجب يتماشيان مع القوانين الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتسمية اليدوية مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فقط فعالة من حيث التكلفة، بل أيضًا مرنة — مما يسمح للممارسين بسهولة التوسع إلى فئات كائنات جديدة أو مجالات جديدة من خلال استبدال مسح الخلفية أو الكائنات بمسوح جديدة. بالنسبة لممارسي التعلم الآلي العاملين في الروبوتات، المركبات المستقلة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون زيادة التكاليف. وهو يسد الفجوة بين المحاكاة والأداء في العالم الحقيقي، مما يتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي للتعلم الآلي في شركة جون دير، حيث يطور نماذج التعلم العميق للإدراك باستخدام الليدار والصور بالألوان في أنظمة حرجة للسلامة وتعمل في الزمن الحقيقي. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية، ويحمل أيضًا تخصصًا فرعيًا في الرياضيات. وقد استشهد ببحث مايكل باحثون في DeepMind، Google، Meta، Microsoft، وOpenAI، من بين آخرين، كما فاز ورقته \(batter\|pitcher\)2vec بجائزة في مؤتمر MIT Sloan Sports Analytics Conference عام 2018. كما ساهم برمجيًا في scikit\-learn وApache Solr، وحظيت مستودعاته على GitHub، التي حصلت مجتمعة على أكثر من 2\,100 نجمة، بأن تكون نقطة انطلاق لأبحاث وأكواد إنتاجية في العديد من المؤسسات المختلفة. **MothBox: جهاز رصد آفات منخفض التكلفة، مفتوح المصدر، وآلي** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية جديدة ومثيرة مفتوحة المصدر، Mothbox. يعد Mothbox مشروعًا فائزًا بالجوائز لمراقبة واسعة النطاق للحشرات بهدف التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في الغابات الاستوائية القاسية ببنما، ويقوم بالتقاط صور عالية الدقة جدًا ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. وبعد آلاف الملاحظات الحشرية ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للتصنيع لتعميم هذه الأداة المهمة على مستوى العالم. سنناقش تطوير هذا الجهاز في غابات بنما ودوره في دراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة كرتون نتورك، IDEO، ومعهد سميثسونيان، ودرّس كأستاذ محاضر في الجامعة الوطنية السنغافورية، وتحول بحثه حتى إلى برنامج تلفزيوني (طرifo) يدعى "Hacking the Wild"، تم توزيعه عبر Discovery Networks. حاليًا، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، ومؤخرًا أسس ورشة عمل مختبرات Digital Naturalism Laboratories. في غابة جامبوا المطيرة ببنما، تدمج Dinalab بين العمل الميداني البيولوجي والصناعة التكنولوجية ضمن مجتمع من العلماء والفنيين والمهندسين والفنانين المحليين والدوليين، بالإضافة إلى متخصصي إعادة تأهيل الحيوانات. ويشغل حاليًا منصب أستاذ متعاون في جامعة واشنطن، حيث يستشار من قبل الطلاب. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من أسلوب جديد لمعالجة المهام، وذلك من خلال الاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أحدث الأبحاث المتعلقة بتمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب (zero-shot) أو عبر الضبط الدقيق (fine-tuning). وعلى وجه التحديد، سأتناول العمل المشترك حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة وهي تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. لكي يتم التخلص من الحاجة إلى تدريب مخصص لكل مهمة، وللتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج بصرية مسبقة التدريب. كما سأناقش أيضًا العمل المشترك على تمكين نماذج اللغة الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على المطالب التي تتطلب فهمًا شاملاً مكانياً-زمنياً: إذ تواجه النماذج الصعوبة في الإجابة على مطالب تشير إلى 1) البيئة بأكملها التي يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وفي نفس الوقت تشير أيضاً إلى 2) أفعال حدثت حديثًا ومُرمَّزة في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل مكانياً-زمنياً مهم للوكلاء الذين يعملون في العالم الحقيقي. وتشمل حلولنا تطوير خط أنابيب مخصص لجمع البيانات، وضبط نموذج MLLM مزوّد بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-แชมبين، يعمل مع طلاب موهوبين في موضوعات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على بكالوريوس الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية بميونيخ عام 2006، وعلى شهادة الدبلوم عام 2008، ثم حصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. بعد ذلك، انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية حول فهم السيناريوهات، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. ونالت أطروحته للدكتوراه ميدالية ETH، كما فاز بحث فريقه بجائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تغييرًا في التصنيع والمراقبة، لكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي أن يكشف حقًا عن أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ مشكلات المحاصيل ويحللها، مستخدمًا صحة أوراق البن كمثال رئيسي. سنبدأ بنظرية أساسية، ثم نحلل كيف تكتشف هذه النماذج صدأ الورقة وأضرار المنجر في صور الأوراق. تشمل الجلسة سير عمل عمليًا شاملاً باستخدام أدوات FiftyOne المفتوحة المصدر للرؤية الحاسوبية، وتشمل تنقيح مجموعة البيانات، واستخلاص القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، وكذلك تجربة عملية في تطبيق هذه التقنيات على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [باولا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. تعمل منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا على تطوير تقنيات هندسية متكاملة مبتكرة، تركز بشكل رئيسي على الرؤية الحاسوبية، والروبوتات، والتعلم الآلي المطبّق على الزراعة.