تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)63766357521537110
مجاني
المفضلة
مشاركة

15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)

addressF5HW+FGX, Vaiaku, Tuvalu

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول أحدث التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **الموقع** افتراضي. [سجّل الدخول عبر Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وتصنيف سحب نقاط الليدار من العالم الحقيقي بحجم كبير أمر مكلف وجهد يستغرق وقتًا طويلاً، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم مشروع Paved2Paradise بديلاً اقتصاديًا: خط أنابيب محاكاة ليدار قابل للتوسيع لإنتاج بيانات واقعية ومصنفة بالكامل مع أقل جهد بشري في التصنيف. الفكرة الأساسية هي "تحليل الواقع" من خلال التقاط فحوص الخلفية (مثل الحقول، الطرق، مواقع البناء) وفحوص الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. من خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise تصنيع عدد كبير من مشاهد التدريب المتنوعة. يشمل خط الأنابيب أربع خطوات: (1) جمع فحوص ليدار واسعة النطاق للخلفية، (2) تسجيل فحوص عالية الدقة لكائنات مستهدفة في ظروف خاضعة للرقابة، (3) إدخال الكائنات داخل الخلفيات مع وضع وحجب يتماشيان مع القوانين الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتصنيف اليدوي مقارنةً بجمع البيانات التقليدية. هذه الطريقة ليست فقط فعالة من حيث التكلفة، بل مرنة أيضًا — مما يتيح للممارسين توسيعها بسهولة إلى فئات أو مجالات كائنات جديدة عن طريق استبدال فحوص الخلفية أو الكائنات. بالنسبة لممارسي التعلم الآلي العاملين في الروبوتات، المركبات المستقلة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون توسيع التكاليف. وهو يسد الفجوة بين المحاكاة والأداء في العالم الحقيقي، مما يمكّن من التكرار الأسرع والنشر الأكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس تعلم آلي أول في شركة John Deere\، حيث يطور نماذج التعلّم العميق لأنظمة الاستشعار بالليدار وRGB في أنظمة حرجة للسلامة وتعمل في الزمن الحقيقي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية\، ويحمل أيضًا تخصصًا فرعيًا للدراسات العليا في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، وكانت ورقة \(batter\|pitcher\)2vec الخاصة به فائزة بجائزة في مؤتمر MIT Sloan Sports Analytics Conference عام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وقد استُخدمت مستودرات GitHub الخاصة به—التي حصلت مجتمعة على أكثر من 2\,100 نجمة—كنقاط بداية لأغراض البحث والإنتاج في العديد من المنظمات المختلفة\. **MothBox: جهاز رصد حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كوتمير عن تصميم أداة علمية مثيرة جديدة ومفتوحة المصدر، Mothbox. يعد مشروع Mothbox فائزًا بالجوائز لمراقبة واسعة النطاق للحشرات من أجل التنوع البيولوجي. إنها جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، يقوم بالتقاط صور فائقة الدقة ثم تحديد تلقائي لمستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على إصدار جديد قابل للإنتاج لمشاركة هذه الأداة المهمة على مستوى العالم. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كوتمير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة الكرتون، IDEO، والمؤسسة الوطنية، ودرّس كأستاذ مساعد في جامعة سنغافورة الوطنية، وحتى تم تحويل بحثه إلى سلسلة تلفزيونية (مضحكة) بعنوان "اختراق البرية"، تم توزيعها بواسطة Discovery Networks. حالياً، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، ومؤخرًا أسس مختبر المساحات الإبداعية للعمل الميداني، Digital Naturalism Laboratories. في غابة الأمطار في جامبوآ ببنما، يدمج Dinalab بين العمل الميداني البيولوجي والحرف التكنولوجية ضمن مجتمع من العلماء والفنيين والمهندسين ومحسنّي الحيوانات المحليين والدوليين. وهو يقدّم حاليًا المشورة للطلاب كأستاذ مشارك في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من أسلوب جديد لمعالجة المهام، وذلك من خلال الاستفادة من القدرات الناشئة بطريقة بدون تدريب. في هذا الحديث، سأناقش الأبحاث الحديثة المتعلقة بتمكين الذكاء الاصطناعي البصري بدون تدريب أو من خلال الضبط الدقيق. على وجه التحديد، سأتناول العمل المشترك حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة التحديد البصري للطلبات في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب خاص بالمهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج الرؤية المسبقة التدريب. كما سأناقش العمل المشترك لتمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الطلبات التي تتطلب فهمًا شاملاً مكانياً-زمنياً: تواجه النماذج الكبيرة متعددة الوسائط صعوبة في الإجابة على طلبات تشير إلى 1) البيئة بأكملها التي يمكن لوكيل مزوّد بـ MLLM العمل فيها؛ وفي نفس الوقت تشير أيضاً إلى 2) الإجراءات الأخيرة التي حدثت للتو والمشفرة في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني-الزماني مهم للوكلاء العاملين في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات وضبط نموذج MLLM مجهز بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الأخيرة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شمباين، يعمل مع طلاب موهوبين في موضوعات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على بكالوريوس ودبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية بميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة دكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. بعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. اهتماماته البحثية تقع في مجال الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية في مواضيع فهم السيناريو، وخوارزميات الاستنتاج والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. تم منح أطروحته للدكتوراه ميدالية ETH، وفاز بحث فريقه بجائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ ثورة في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ ويحلل مشكلات المحاصيل باستخدام صحة أوراق البن كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم ندرس كيف تكتشف هذه النماذج الصدأ وأضرار المنّ في صور الأوراق. تشمل الجلسة سير عمل شاملة عملية باستخدام مجموعة أدوات الرؤية الحاسوبية المفتوحة المصدر FiftyOne، وتغطي إدارة مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وعلى خبرة عملية في تطبيق هذه الأساليب على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. تعمل على تطوير تقنيات هندسية متكاملة جديدة، خصوصًا في مجالات الرؤية الحاسوبية، والروبوتات، والتعلم الآلي المطبّق على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.

المصدر:  meetup عرض المنشور الأصلي

موقع
F5HW+FGX, Vaiaku, Tuvalu
عرض الخريطة

meetup

قد يعجبك أيضا

كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.