انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى متحدثين خبراء حول آخر التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل الدخول عبر Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع من أجل الإدراك في العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية وجود مجموعات بيانات ضخمة ومتنوعة ثلاثية الأبعاد. ولكن جمع وترميز سحب ليدار من العالم الحقيقي على نطاق واسع عملية مكلفة وجهدة، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم مشروع Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع لإنشاء مجموعات بيانات واقعية ومُوسومة تمامًا مع أقل جهد بشري في التسمية. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح الخلفية (مثل الحقول، الطرق، مواقع البناء) ومسح الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. وبدمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد عدد كبير جدًا من مشاهد التدريب المتنوعة. يشمل خط الأنابيب أربع خطوات: (1) جمع مسوحات ليدار واسعة النطاق للخلفية، (2) تسجيل مسوحات عالية الدقة لكائنات مستهدفة في ظروف محكومة، (3) إدخال الكائنات داخل الخلفيات مع وضع وحجب متسقين من الناحية الفيزيائية، و(4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها باستخدام Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتسمية اليدوية مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل مرنة أيضًا—تمكّن الممارسين من التوسع بسهولة إلى فئات كائنات جديدة أو مجالات جديدة عن طريق استبدال مسوحات الخلفية أو الكائنات. بالنسبة لممارسي التعلم الآلي العاملين في الروبوتات، أو المركبات ذاتية القيادة، أو نظم الإدراك الحرجة للسلامة، فإن Paved2Paradise يسلط الضوء على مسار عملي نحو توسيع بيانات التدريب دون زيادة التكاليف. كما أنه يسد الفجوة بين المحاكاة والأداء في العالم الحقيقي، مما يتيح التكرار الأسرع والنشر الأكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألْكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي للتعلم الآلي في شركة John Deere\، حيث يطوّر نماذج التعلّم العميق للإدراك باستخدام الليدار والصور الملونة (RGB) في نظم حرجة للسلامة وتعمل في الزمن الحقيقي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية\، ويحمل أيضًا تخصصًا فرعيًا في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، وكانت ورقته \(batter\|pitcher\)2vec فائزة بجائزة في مؤتمر MIT Sloan Sports Analytics Conference عام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وقد تم استخدام مستودعاته على GitHub—which حظيت مجتمعة بأكثر من 2\,100 نجمة—كمراجع أولية لأغراض البحث والتطوير في العديد من المؤسسات\. **MothBox: جهاز رصد آفات منخفض التكلفة ومفتوح المصدر** سيتحدث د. آندي كوتميير عن تصميم أداة علمية مفتوحة المصدر جديدة ومثيرة، تُعرف باسم Mothbox. يُعد مشروع Mothbox مشروعًا فائزًا بجائزة لرصد الحشرات على نطاق واسع من أجل التنوع البيولوجي. إنها جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، يقوم بالتقاط صور عالية الدقة للغاية ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات عمليات النشر في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن بصدد تطوير نسخة جديدة قابلة للإنتاج لمشاركة هذه الأداة المهمة في جميع أنحاء العالم. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته في دراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم د. آندي كوتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل Cartoon Network وIDEO وSmithsonian، ودرّس كأستاذ على المسار الوظيفي الدائم في الجامعة الوطنية السنغافورية، وحتى تحولت إحدى أبحاثه إلى سلسلة تلفزيونية (مضحكة) بعنوان "Hacking the Wild"، تم توزيعها بواسطة Discovery Networks. في الوقت الحالي، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس مختبر الحرف الرقمية للطبيعة (Digital Naturalism Laboratories)، وهو مساحة إبداعية مرتبطة بمحطة ميدانية. في غابة جامبوا المطيرة في بنما، يجمع Dinalab بين العمل الميداني البيولوجي والصناعة التكنولوجية ضمن مجتمع من العلماء والفنيين والمهندسين والفنانين المحليين والدوليين، بالإضافة إلى المختصين بإعادة تأهيل الحيوانات. وهو حاليًا يستشار كأستاذ متعاون في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش الأبحاث الحديثة المتعلقة بتمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب أو من خلال التخصيص الدقيق (fine-tuning). على وجه التحديد، سأتناول العمل المشترك حول RELOCATE، وهي معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلامات البصرية في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب مخصص للمهمة ومعالجة مقاطع الفيديو الطويلة بكفاءة، تعتمد RELOCATE على تمثيل قائم على المناطق مشتق من نماذج بصرية مُدرّبة مسبقًا. سأناقش أيضًا العمل المشترك حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الطلبات التي تتطلب فهمًا شاملاً مكانيًا-زمانيًا: إذ تواجه النماذج متعددة الوسائط صعوبة في الإجابة على طلبات تشير إلى 1) بيئة كاملة يمكن لوكيل مزوّد بنموذج MLLM العمل فيها؛ وفي نفس الوقت تشير أيضًا إلى 2) أفعال حدثت حديثًا وتم ترميزها في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني-الزماني مهم للوكلاء الذين يعملون في العالم الحقيقي. وتشمل حلولنا تطوير خط أنابيب مخصص لجمع البيانات وتخصيص نموذج MLLM مزوّد بمشعّات (projectors) لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للمشاهدات الأخيرة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شمباين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على درجة البكالوريوس والدبلوم في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. وبعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية في موضوعات فهم السيناريوهات، وخوارزميات الاستنتاج والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. ونالت أطروحته للدكتوراه ميدالية ETH، كما حصل فريقه البحثي على جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** إن كشف الشذوذ يُحدث ثورة في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لتحقيق فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ ويحلل مشكلات المحاصيل باستخدام صحة أوراق القهوة كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم ندرس كيف تكتشف هذه النماذج الصدأ وأضرار المنجر في صور الأوراق. تشمل الجلسة سير عمل شاملًا عمليًا باستخدام مجموعة أدوات الرؤية الحاسوبية مفتوحة المصدر FiftyOne، وتشمل تنظيم مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وعلى خبرة عملية في تطبيق هذه الأساليب على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. تعمل على تطوير تقنيات هندسية متكاملة جديدة، أساسًا في مجالات الرؤية الحاسوبية، والروبوتات، والتعلم الآلي المطبّق على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.