انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول أحدث التطورات في مجال التقاء الذكاء الاصطناعي البصري بالزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الباسيفيكي **المكان** افتراضي. [سجّل الدخول إلى Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج إدراك قوية للروبوتات والأنظمة المستقلة مجموعات بيانات ضخمة ومتنوعة ثلاثية الأبعاد. ولكن جمع وتصنيف سحب نقاط ليدار من العالم الحقيقي بكميات كبيرة أمر مكلف ويتطلب وقتًا طويلاً، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع يُنتج مجموعات بيانات واقعية ومُصنفة بالكامل مع أقل جهد بشري في التصنيف. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح الخلفية (مثل الحقول، الطرق، مواقع البناء) ومسح الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد مجموعة كبيرة تآلفيًا من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار واسع النطاق للخلفية، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف خاضعة للتحكم، (3) إدخال الكائنات في الخلفية مع وضع وحجب متسقين من الناحية الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بفعالية إلى العالم الحقيقي، وتحقق أداءً قويًا في الكشف مع تقليل كبير في التصنيف اليدوي مقارنةً بجمع مجموعة البيانات التقليدي. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل أيضًا مرنة – تتيح للممارسين التوسع بسهولة إلى فئات أو مجالات كائنات جديدة عن طريق استبدال مسحات الخلفية أو الكائنات بمسحات جديدة. بالنسبة لممارسي تعلم الآلات العاملين في مجالات الروبوتات، المركبات المستقلة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون توسيع التكاليف. وهو يُغلق الفجوة بين الأداء في المحاكاة والأداء في العالم الحقيقي، مما يمكّن من التكرار الأسرع والنشر الأكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي في تعلم الآلات في شركة جون دير، حيث يطور نماذج تعلم عميق للإدراك باستخدام الليدار والصور الملونة في أنظمة حرجة للسلامة وتعمل في الزمن الحقيقي. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية، ويحمل أيضًا تخصصًا فرعيًا في الرياضيات. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind، جوجل، ميتا، مايكروسوفت، وOpenAI، من بين آخرين، وفاز ورقته \(batter\|pitcher\)2vec بجائزة في مؤتمر MIT Sloan Sports Analytics لعام 2018. كما ساهم برمجيًا في scikit\-learn وApache Solr، وقد استُخدمت مستودعات GitHub الخاصة به – التي حصلت مجتمعة على أكثر من 2\,100 نجمة – كنقطة بداية لأبحاث وشيفرات إنتاجية في العديد من المؤسسات المختلفة. **MothBox: جهاز رصد آفات رخيص وذو مصدر مفتوح** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية جديدة ومثيرة مفتوحة المصدر، وهي Mothbox. يُعد مشروع Mothbox مشروعًا فائزًا بجائزة لمراقبة واسعة النطاق للحشرات من أجل التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويُجري صورًا فائقة الدقة ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للتصنيع لنشارك هذه الأداة المهمة في جميع أنحاء العالم. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يُصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. وقد عمل مع منظمات كبيرة مثل شبكة كرتون نتورك، IDEO، ومعهد سميثسونيان، ودرّس كبروفيسور على ملاك وظيفي في الجامعة الوطنية السنغافورية، وحتى تم تحويل بحثه إلى سلسلة تلفزيونية (مضحكة) بعنوان "تسلل إلى البرية"، تم توزيعها بواسطة شبكات ديسكفري. حالياً، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس ورشة عمل حقول المختبرات الطبيعية الرقمية. في غابة الأمازون بـ جامبوا في بنما، يجمع Dinalab بين العمل الميداني البيولوجي وصناعة التكنولوجيا ضمن مجتمع من العلماء والفنيين والفنانين والمهندسين والمُنقذين المحليين والدوليين. وحاليًا، يقدم الاستشارات للطلاب كبروفيسور متعاون في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من أسلوب جديد لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش بحثًا حديثًا حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب أو من خلال الضبط الدقيق (fine-tuning). على وجه التحديد، سأناقش عملًا مشتركًا حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء المهمة الصعبة لتحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب مخصص للمهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج بصرية مُدرّبة مسبقًا. سأناقش أيضًا عملًا مشتركًا حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الأوامر التي تتطلب فهمًا شاملاً مكانيًا-زمانيًا: حيث تجد النماذج متعددة الوسائط صعوبة في الإجابة على أوامر تشير إلى 1) بيئة كاملة يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وتشير في الوقت نفسه أيضًا إلى 2) إجراءات حديثة حدثت للتو وتم ترميزها في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني-الزماني مهم للوكلاء العاملين في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب جمع بيانات مخصص وضبطًا دقيقًا لنموذج MLLM مزود بمشعّات لتحسين كلا الفهمين: المكاني للبيئة والزماني للملاحظات الحديثة. *عن المتحدث* [أليكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شمباين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على بكالوريوس ودبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ في عام 2014. وبعد ذلك انضم إلى جامعة تورونتو كزميل باحث ما بعد الدكتوراه حتى عام 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية في مجالات فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. وقد تم منح أطروحة دكتوراه له ميدالية ETH، وفاز بحث فريقه بجائزة NSF CAREER. **ما وراء المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تغييرًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي حقًا اكتشاف أمراض النباتات وأضرار الآفات في وقت مبكر بما يكفي لصنع فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ ويحلل مشكلات المحاصيل باستخدام صحة أوراق القهوة كمثال رئيسي. سنبدأ بنظرية أساسية، ثم نفحص كيف تكتشف هذه النماذج الصدأ وأضرار المنّ في صور الأوراق. تتضمن الجلسة سير عمل عمليًا شاملاً باستخدام مجموعة أدوات الرؤية الحاسوبية مفتوحة المصدر FiftyOne، تغطي تنقية مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وتصور النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وتجربة عملية في تطبيق هذه التقنيات على التحديات الزراعية وDomains أخرى. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية وتعلم الآلات، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وهي تُطور تقنيات هندسية متكاملة جديدة، خصوصًا في مجالات الرؤية الحاسوبية، والروبوتات، وتعلم الآلات المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.