تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)63748477967491110
مجاني
المفضلة
مشاركة

15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)

addressF5HW+FGX, Vaiaku, Tuvalu

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

انضم إلينا في اليوم الأول من سلسلة فعاليات افتراضية للاستماع إلى متحدثين خبراء حول أحدث التطورات في مجال التقاء الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الباسيفيكي **المكان** افتراضي. [سجّل الدخول إلى Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع من أجل الإدراك في العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية مجموعات بيانات ضخمة ومتنوعة ثلاثية الأبعاد. ولكن جمع وترميز سحب ليدار من العالم الحقيقي بحجم كبير مكلفٌ للغاية ويتطلب وقتًا طويلاً، خاصة عندما تكون التصنيفات عالية الجودة ضرورية. يقدم Paved2Paradise بديلًا اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع لإنشاء مجموعات بيانات واقعية ومكتملة الترميز مع أقل جهد بشري في التصنيف. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح خلفيات (مثل الحقول، الطرق، مواقع البناء) ومسح كائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد عدد كبير توليفيًا من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار واسع النطاق للخلفيات، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف خاضعة للرقابة، (3) إدخال الكائنات في الخلفيات مع وضع وحجب متسقين من الناحية الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. تُظهر التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بفعالية إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع جهد ترقيمي يدوي أقل بكثير مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل مرنة أيضًا—تمكّن الممارسين من التوسع بسهولة إلى فئات أو نطاقات كائنات جديدة عن طريق استبدال مسحات الخلفية أو الكائنات بمسحات جديدة. بالنسبة لممارسي تعلم الآلة العاملين في مجالات الروبوتات، المركبات ذاتية القيادة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون توسيع التكاليف. وهو يسد الفجوة بين الأداء في المحاكاة والأداء في العالم الحقيقي، ما يتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي في تعلم الآلة في شركة جون دير، حيث يطور نماذج تعلم عميق للإدراك باستخدام بيانات الليدار والصور الملونة (RGB) في أنظمة حرجة للسلامة وتُعمل في الزمن الحقيقي. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية، كما يحمل تخصصًا فرعيًا للدراسات العليا في الرياضيات. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind، جوجل، ميتا، مايكروسوفت، وOpenAI، من بين آخرين، وكانت ورقة أبحاثه (batter|pitcher)2vec فائزة بجائزة في مؤتمر MIT Sloan لتحليلات رياضة 2018. كما ساهم برمجيًا في scikit-learn وApache Solr، وحققت مستودعات GitHub الخاصة به، التي حصلت مجتمعة على أكثر من 2,100 نجمة، نقطة انطلاق لأبحاث وشفرات إنتاجية في العديد من المؤسسات المختلفة. **MothBox: جهاز مراقبة آفات منخفض التكلفة، مفتوح المصدر، وآلي** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية جديدة مثيرة ومفتوحة المصدر، تُسمى Mothbox. إن Mothbox هو مشروع فائز بجائزة لمراقبة واسعة النطاق للحشرات من أجل التنوع البيولوجي. وهو جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويُجري صورًا فائقة الدقة ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نطور نسخة جديدة قابلة للتصنيع لنشارك هذه الأداة المهمة على مستوى العالم. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يُصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة كرتون نتورك، وIDEO، ومعهد سميثسونيان، ودرّس كبروفيسور متعاقد في جامعة سنغافورة الوطنية، وتحولت أبحاثه حتى إلى سلسلة تلفزيونية (مضحكة) بعنوان "Hacking the Wild"، تم توزيعها عبر شبكات ديسكفري. في الوقت الحالي، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، ومؤخرًا أسس ورشة عمل مختبرات الطبيعة الرقمية (Digital Naturalism Laboratories) في محطة ميدانية. في غابة الأمطار في جامبوا ببنما، تدمج Dinalab بين العمل الميداني البيولوجي وصناعة التكنولوجيا مع مجتمع من العلماء والفنانين والمهندسين ومتعهدي إعادة تأهيل الحيوانات المحليين والدوليين. وهو يُقدم حاليًا استشارات للطلاب بصفته أستاذًا مرتبطًا في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من أسلوب جديد لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب (zero-shot) أو عبر التخصيص الدقيق (fine-tuning). على وجه التحديد، سأناقش عملًا مشتركًا حول RELOCATE، وهو خط أساس بسيط لا يتطلب تدريبًا مصممًا لأداء المهمة الصعبة لتحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب خاص بالمهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مشتق من نماذج رؤية مسبقة التدريب. كما سأناقش عملًا مشتركًا حول تمكين النماذج الكبيرة متعددة الوسائط (MLLMs) من الإجابة بشكل صحيح على المطالبات التي تتطلب فهمًا شموليًا مكانًا وزمنًا: فالنماذج الكبيرة متعددة الوسائط تجد صعوبة في الإجابة على المطالبات التي تشير إلى 1) بيئة كاملة يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وتشير في نفس الوقت إلى 2) أفعال حديثة حدثت للتو ومُرمّزة في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل من النوع المكاني-الزماني مهم للوكلاء العاملين في العالم الحقيقي. ويتضمن حلنا تطوير خط أنابيب جمع بيانات مخصص وضبط نموذج MLLM مزود بمشعّات (projectors) لتحسين فهم البيئة من حيث الفضاء وفهم الملاحظات الحديثة من حيث الزمن. *عن المتحدث* [أليكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شامبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على درجة البكالوريوس والدبلوم في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونخ عامي 2006 و2008 على التوالي، ونال درجة الدكتوراه في علوم الحاسوب من ETH زيورخ في عام 2014. وبعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تتمحور اهتماماته البحثية حول الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية في مجالات فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، وتحليل الصور واللغة، والنماذج التوليدية. وقد مُنحت أطروحته للدكتوراه ميدالية ETH، كما مُنح بحث فريقه جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تغييرًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات في وقت مبكر كافٍ لصنع فرق؟ يُظهر هذا الحديث كيف يُمكن لكشف الشذوذ التعرف على مشكلات المحاصيل وتحديد مواقعها باستخدام صحة أوراق القهوة كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم ندرس كيف تكتشف هذه النماذج صدأ الورقة وأضرار اليرقات في صور الأوراق. تشمل الجلسة سير عمل شاملًا عمليًا باستخدام مجموعة أدوات الرؤية الحاسوبية مفتوحة المصدر FiftyOne، تغطي تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وتصور النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، بالإضافة إلى خبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية ونطاقات أخرى. *عن المتحدث* [باولا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية وتعلم الآلة، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وهي تُطور تقنيات هندسية متكاملة جديدة، بشكل رئيسي في مجالات الرؤية الحاسوبية، والروبوتات، وتعلم الآلة المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.

المصدر:  meetup عرض المنشور الأصلي

موقع
F5HW+FGX, Vaiaku, Tuvalu
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.