انضم إلينا في اليوم الأول من سلسلة فعاليات افتراضية للاستماع إلى خبراء حول آخر التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **الموقع** افتراضي. [سجّل الدخول عبر زووم.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وتصنيف سحب نقاط ليدار من العالم الحقيقي بحجم كبير أمر مكلف وجهد، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم Paved2Paradise بديلاً اقتصاديًا: خط أنابيب محاكاة ليدار قابل للتوسيع يولد مجموعات بيانات واقعية ومكتملة الترميز مع أقل حد ممكن من الجهد اليدوي في التصنيف. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح الخلفيات (مثل الحقول، الطرق، مواقع البناء) ومسح الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال الجمع الذكي بين هذين المصدرَين، يمكن لـ Paved2Paradise توليد مجموعة كبيرة من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح واسع النطاق للخلفيات باستخدام ليدار، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف مضبوطة، (3) إدخال الكائنات في الخلفيات مع وضع وحجب يتماشيان مع القوانين الفيزيائية، (4) محاكاة هندسة ليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتسمية اليدوية مقارنةً بجمع البيانات التقليدي. هذه الطريقة ليست فقط فعالة من حيث التكلفة، بل مرنة أيضًا — مما يسمح للممارسين بسهولة التوسع إلى فئات كائنات جديدة أو مجالات جديدة عن طريق استبدال مسح الخلفيات أو الكائنات بآخر جديد. بالنسبة لممارسي التعلم الآلي العاملين في مجالات الروبوتات أو المركبات ذاتية القيادة أو أنظمة الإدراك الحرجة للسلامة، فإن Paved2Paradise يسلط الضوء على طريق عملي لتوسيع بيانات التدريب دون زيادة التكاليف. وهو يسد الفجوة بين المحاكاة والأداء في العالم الحقيقي، مما يتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس تعلم آلي أول في شركة جون دير، حيث يطور نماذج تعلم عميق لأنظمة الاستشعار بالليدار والصور RGB في أنظمة حرجة للسلامة وتتطلب زمنًا حقيقيًا. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن، مع أطروحة حول تحسين رؤية الحاسوب والشبكات العصبية العميقة الزمكانية، ويحمل أيضًا تخصصًا فرعيًا للدراسات العليا في الرياضيات. وقد استشهد ببحثه باحثون من DeepMind وGoogle وMeta وMicrosoft وOpenAI وغيرهم، كما حاز ورقته \(batter\|pitcher\)2vec على جائزة في مؤتمر MIT Sloan Sports Analytics Conference عام 2018. كما ساهم برمجيًا في scikit\-learn وApache Solr، وقد استُخدم مستودعاته على GitHub — التي حصلت مجتمعة على أكثر من 2\,100 نجمة — كنقاط بداية لأبحاث وأكواد إنتاجية في العديد من المؤسسات المختلفة. **MothBox: جهاز رصد حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كوتميير عن تصميم أداة علمية جديدة ومثيرة مفتوحة المصدر، Mothbox. يعد مشروع Mothbox مشروعًا فائزًا بجائزة لمراقبة الحشرات على نطاق واسع من أجل التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، يقوم بالتقاط صور عالية الدقة جدًا ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. وبعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للإنتاج لمشاركة هذه الأداة المهمة في جميع أنحاء العالم. وسنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كوتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل Cartoon Network وIDEO وSmithsonian، ودرّس كبروفيسور متفرغ في الجامعة الوطنية السنغافورية، وحتى تم تحويل بحثه إلى برنامج تلفزيوني (مضحك) باسم "Hacking the Wild"، تم توزيعه عبر Discovery Networks. في الوقت الحالي، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس ورشة عمل المختبرات الميدانية، Digital Naturalism Laboratories. في غابة جامبوا المطيرة في بنما، تدمج Dinalab بين العمل الميداني البيولوجي والصناعة التكنولوجية ضمن مجتمع من العلماء والفنانين والمهندسين ومُعالجي الحيوانات المحليين والدوليين. وحاليًا، يعمل أيضًا كأستاذ مشارك مستشار للطلاب في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، مستفيدة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أحدث الأبحاث حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب أو عبر التعديل الدقيق (fine-tuning). وعلى وجه التحديد، سأناقش العمل المشترك حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء المهمة الصعبة المتمثلة في تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب خاص بالمهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مشتق من نماذج الرؤية المسبقة التدريب. كما سأناقش أيضًا العمل المشترك حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الطلبات التي تتطلب فهمًا شاملاً مكانياً وزمنياً: فالنماذج MLLMs تواجه صعوبة في الإجابة على الطلبات التي تشير إلى 1) بيئة كاملة يمكن لوكيل مزود بـ MLLM العمل فيها؛ وفي نفس الوقت تشير أيضًا إلى 2) الإجراءات الأخيرة التي حدثت للتو وتم ترميزها في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني والزماني مهم للوكلاء الذين يعملون في العالم الحقيقي. ويتضمن حلنا تطوير خط أنابيب مخصص لجمع البيانات والتعديل الدقيق لنموذج MLLM مزود بمشعاعات لتحسين كل من الفهم المكاني للبيئة والفَهم الزمني للملاحظات الأخيرة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-แชมبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب. تلقى درجة البكالوريوس والدبلوم في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. بعد ذلك، انضم إلى جامعة تورونتو كزميل باحث حتى عام 2016. تشمل اهتماماته البحثية مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب، حيث شارك في تأليف عدد كبير من الأوراق البحثية حول موضوعات في فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. وقد حصلت أطروحته للدكتوراه على ميدالية ETH، وحاز بحث فريقه على جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ ثورة في التصنيع والمراقبة، لكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لتحقيق فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ مشكلات المحاصيل ويحددها بدقة، باستخدام صحة أوراق البن كمثالنا الأساسي. سنبدأ بالنظرية الأساسية، ثم نحلل كيف تكتشف هذه النماذج صدأ الورقة وأضرار المنقوشات في صور الأوراق. تشمل الجلسة سير عمل شاملة عملية باستخدام أدوات FiftyOne مفتوحة المصدر للرؤية الحاسوبية، وتغطي تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وخبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) حاصلة على درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وهي تعمل منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا على تطوير تقنيات هندسية متكاملة جديدة، تركز أساسًا على الرؤية الحاسوبية، والروبوتات، والتعلم الآلي المطبّق على الزراعة.