انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول أحدث التطورات في مجال التقاء الذكاء الاصطناعي البصري بالزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل الدخول إلى Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وترميز سحب الليدار في العالم الحقيقي بحجم كبير أمر مكلفٌ وطويلٌ، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم مشروع Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع يُنتج بيانات واقعية ومُوسومة تمامًا بجهد تسمية بشري ضئيل. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح الخلفية (مثل الحقول، الطرق، مواقع البناء) ومسح الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد عدد هائل من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار واسع النطاق للخلفية، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف مضبوطة، (3) إدخال الكائنات داخل الخلفيات مع وضع وحجب يتماشى مع القوانين الفيزيائية، و(4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتسمية اليدوية مقارنةً بجمع البيانات التقليدي. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل مرنة أيضًا—تمكّن الممارسين من التوسع بسهولة إلى فئات أو مجالات كائنات جديدة عبر استبدال مسح الخلفية أو الكائنات. بالنسبة لممارسي التعلم الآلي العاملين في مجالات الروبوتات، المركبات المستقلة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise طريقًا عمليًا نحو توسيع بيانات التدريب دون زيادة التكاليف. ويُغلق هذه الفجوة بين المحاكاة والأداء في العالم الحقيقي، مما يتيح التكرار السريع والنماذج أكثر موثوقية في النشر. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس متقدم للتعلم الآلي في شركة John Deere\، حيث يطوّر نماذج التعلّم العميق لأنظمة الاستشعار بالليدار والصور الملونة (RGB) في أنظمة تتطلب السلامة\-وتُعمل في الزمن الحقيقي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين رؤية الحاسوب والشبكات العصبية العميقة الزمكانية\، وله أيضًا شهادة فرعية في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، كما حاز ورقته البحثية \(batter\|pitcher\)2vec على جائزة في مؤتمر MIT Sloan Sports Analytics Conference لعام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وحققت مستودرات GitHub الخاصة به—التي حصلت مجتمعة على أكثر من 2\,100 نجمة—أن تكون نقطة انطلاق لأبحاث وأكواد إنتاجية في العديد من المؤسسات المختلفة\. **MothBox: جهاز رصد حشرات منخفض التكلفة، مفتوح المصدر، وآلي** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية جديدة ومثيرة مفتوحة المصدر، Mothbox. إن Mothbox هو مشروع فائز بجائزة لمراقبة الحشرات على نطاق واسع من أجل التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في الغابات الاستوائية الصعبة في بنما، ويقوم بتصوير صور عالية الدقة جدًا ثم يقوم بتحديد تلقائي لمستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نطوّر نسخة جديدة قابلة للتصنيع لنشارك هذه الأداة المهمة عالميًا. سنناقش تطوير هذا الجهاز في غابات بنما و أهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة الكرتون، IDEO، ومعهد سميثسونيان، ودرّس كبروفيسور في جامعة سنغافورة الوطنية، وتحولت أبحاثه حتى إلى برنامج تلفزيوني (ساخر) بعنوان "Hacking the Wild"، تم توزيعه عبر شبكات Discovery. حاليًا، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس مختبر الحرف الرقمية (Digital Naturalism Laboratories)، وهو فضاء مخصص للمبتكرين في محطة ميدانية. في غابة جامبوا المطيرة في بنما، يدمج Dinalab بين العمل الميداني البيولوجي وصناعة التكنولوجيا ضمن مجتمع من العلماء والفنانين والمهندسين ومُعالجي الحيوانات المحليين والدوليين. ويشغل حاليًا أيضًا منصب أستاذ مشارك يستشار من قبل طلاب جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب أو عبر التعديل الدقيق (fine-tuning). وعلى وجه التحديد، سأناقش عملًا مشتركًا حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مُعدّ لأداء مهمة صعبة وهي تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. لإزالة الحاجة إلى تدريب مخصص لكل مهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مشتق من نماذج الرؤية المسبقة التدريب. سأناقش أيضًا عملًا مشتركًا حول تمكين النماذج الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الأوامر التي تتطلب فهمًا شاملاً مكانزمنيًا: فالنماذج MLLMs تجد صعوبة في الإجابة على أوامر تشير إلى 1) بيئة كاملة يمكن لوكيل مزوّد بـ MLLM العمل فيها؛ وفي نفس الوقت تشير أيضًا إلى 2) إجراءات حديثة حدثت للتو وتم ترميزها في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكانزمني مهم للوكلاء الذين يعملون في العالم الحقيقي. ويتضمن حلنا تطوير خط أنابيب مخصص لجمع البيانات وتعديل دقيق لنموذج MLLM مزوّد بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للمشاهدات الحديثة. *عن المتحدث* [أليكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شمباين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب. حصل على بكالوريوس ودبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية بميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. وبعد ذلك انضم إلى جامعة تورونتو كزميل باحث حتى عام 2016. تشمل اهتماماته البحثية مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب، حيث شارك في تأليف العديد من الأوراق البحثية في مواضيع تشمل فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. ونالت أطروحته للدكتوراه ميدالية ETH، وحاز بحث فريقه على جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تغييرًا في التصنيع والمراقبة، لكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ ويحلل مشكلات المحاصيل باستخدام صحة أوراق القهوة كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم نفحص كيف تكتشف هذه النماذج صدأ الأوراق وأضرار المنجر في الصور. تتضمن الجلسة سير عمل شاملًا عمليًا باستخدام مجموعة أدوات الرؤية الحاسوبية مفتوحة المصدر FiftyOne، تشمل تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، وكذلك تجربة عملية في تطبيق هذه التقنيات على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وقد كانت تعمل على تطوير تقنيات هندسية متكاملة جديدة، خصوصًا في مجالات الرؤية الحاسوبية، والروبوتات، والتعلم الآلي المطبّق على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.