تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)63806293390721110
مجاني
المفضلة
مشاركة

15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)

addressF5HW+FGX, Vaiaku, Tuvalu

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول أحدث التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **الموقع** افتراضي. [سجّل الدخول عبر Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية مجموعات بيانات ضخمة ومتنوعة ثلاثية الأبعاد. ولكن جمع وترميز سحب ليدار من العالم الحقيقي بكميات كبيرة أمر مكلف وجهد يستغرق وقتًا طويلاً، خاصة عندما تكون التصنيفات عالية الجودة ضرورية. يقدم مشروع Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع لإنتاج مجموعات بيانات واقعية ومُعلَّمة بالكامل مع أقل جهد بشري في التصنيف. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح الخلفية (مثل الحقول، الطرق، مواقع البناء) ومسح الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise تركيب عدد كبير جدًا من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسوحات ليدار واسعة النطاق للخلفية، (2) تسجيل مسوحات عالية الدقة لكائنات مستهدفة في ظروف مضبوطة، (3) إدخال الكائنات داخل الخلفيات مع وضع وحجب متسق فيزيائيًا، و(4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدرّبة على بيانات تم إنشاؤها باستخدام Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتسمية اليدوية مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل أيضًا مرنة – مما يسمح للممارسين بسهولة التوسع إلى فئات أو مجالات كائنات جديدة عن طريق استبدال مسوحات الخلفية أو الكائنات بمسوحات جديدة. بالنسبة لممارسي التعلم الآلي العاملين في الروبوتات أو المركبات ذاتية القيادة أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون توسيع التكاليف. وهو يسد الفجوة بين المحاكاة والأداء في العالم الحقيقي، مما يتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألْكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي للتعلم الآلي في شركة John Deere\، حيث يطور نماذج التعلم العميق لاستشعار الليدار والصورة الملونة (RGB) في أنظمة حرجة للسلامة وتعمل في الزمن الحقيقي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، وكان موضوع أطروحته تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية\، كما يحمل تخصصًا فرعيًا في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، وكانت ورقته \(batter\|pitcher\)2vec فائزة بجائزة في مؤتمر MIT Sloan Sports Analytics Conference عام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وقد استخدمت مستودعاته على GitHub—التي حصلت مجتمعة على أكثر من 2\,100 نجمة—كنقاط بداية لأبحاث وبرامج تشغيلية في العديد من المؤسسات المختلفة\. **MothBox: جهاز مراقبة آفات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية جديدة ومثيرة مفتوحة المصدر، وهي Mothbox. إن Mothbox مشروع فائز بجوائز لمراقبة واسعة النطاق للحشرات من أجل التنوع البيولوجي. إنها جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويقوم بتصوير صور فائقة الدقة ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. وبعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للتصنيع لتوزيع هذه الأداة المهمة عالميًا. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة كرتون نتورك، وIDEO، ومعهد سميثسونيان، ودرّس كأستاذ محاضر في الجامعة الوطنية السنغافورية، وحتى تم تحويل بحثه إلى برنامج تلفزيوني (ساخر) بعنوان "اختراق البرية"، تم توزيعه بواسطة شبكات Discovery. حاليًا، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس ورشة تصنيع مختبرات Digital Naturalism. في غابة الأمطار في جامboa، بنما، تدمج Dinalab بين العمل الميداني البيولوجي والصناعة التكنولوجية مع مجتمع من العلماء والفنيين والفنانين المحليين والدوليين ومُعالجي الحيوانات. وحاليًا، يعمل أيضًا كأستاذ مشارك مستشار للطلاب في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أحدث الأبحاث المتعلقة بتمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب (zero-shot) أو من خلال التخصيص الدقيق (fine-tuning). على وجه التحديد، سأتناول العمل المشترك حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب خاص بالمهمة وللتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مشتق من نماذج بصرية مسبقة التدريب. كما سأناقش العمل المشترك حول تمكين النماذج الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الأوامر التي تتطلب فهمًا شاملاً مكانياً-زمنياً: فالنماذج الكبيرة متعددة الوسائط تجد صعوبة في الإجابة على الأوامر التي تشير إلى 1) بيئة كاملة يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وتشير في الوقت نفسه أيضًا إلى 2) إجراءات حديثة حدثت للتو وتم ترميزها في مقطع فيديو. لكن مثل هذا الفهم الشامل المكاني-الزماني مهم للوكلاء الذين يعملون في العالم الحقيقي. ويتضمن حلنا تطوير خط أنابيب مخصص لجمع البيانات وتخصيص نموذج MLLM مزود بمشغلات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [أليكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شمباين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على درجة البكالوريوس والدبلوم في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية بميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. بعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تركز اهتماماته البحثية على مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية في مواضيع تشمل فهم السيناريوهات، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. ونالت أطروحته للدكتوراه ميدالية ETH، وحاز بحث فريقه على جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** إن كشف الشذوذ يُحدث تحولًا في التصنيع والمراقبة، لكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي أن يكشف حقًا عن أمراض النباتات وأضرار الآفات في وقت مبكر بما يكفي لصنع فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ ويحلل مشكلات المحاصيل باستخدام صحة أوراق البن كمثال أساسي. سنبدأ بالنظرية الأساسية، ثم نفحص كيف تكتشف هذه النماذج الصدأ وأضرار المنجر في صور الأوراق. تشمل الجلسة سير عمل شاملاً وعمليًا باستخدام أدوات FiftyOne مفتوحة المصدر للرؤية الحاسوبية، وتشمل تنقيح مجموعة البيانات، واستخلاص القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وخبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [باولا راموس](https://www.linkedin.com/in/paula-ramos-phd/) حاصلة على درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وقد كانت تطور تقنيات هندسية متكاملة جديدة، أساسًا في مجالات الرؤية الحاسوبية، والروبوتات، والتعلم الآلي المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.

المصدر:  meetup عرض المنشور الأصلي

موقع
F5HW+FGX, Vaiaku, Tuvalu
عرض الخريطة

meetup

قد يعجبك أيضا

كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.