تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)63768927656065110
مجاني
المفضلة
مشاركة

15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)

addressF5HW+FGX, Vaiaku, Tuvalu

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول آخر التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل الدخول إلى Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع من أجل الإدراك في العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج إدراك قوية للروبوتات والاستقلالية وجود مجموعات بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وتصنيف سحب نقاط ليدار من العالم الحقيقي بحجم كبير أمرٌ مكلفٌ ويستغرق وقتًا طويلاً، خاصة عندما تكون العلامات عالية الجودة ضرورية. يقدم مشروع Paved2Paradise بديلًا اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع لإنتاج مجموعات بيانات واقعية ومُصنفة بالكامل مع الحد الأدنى من الجهد اليدوي للتصنيف. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح خلفيات (مثل الحقول، الطرق، مواقع البناء) ومسح كائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. وبدمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد عدد كبير من مشاهد التدريب المتنوعة. يشمل خط الأنابيب أربع خطوات: (1) جمع مسح ليدار خلفي واسع النطاق، (2) تسجيل مسح عالي الدقة لكائنات مستهدفة في ظروف مضبوطة، (3) إدخال الكائنات داخل الخلفيات مع وضع وحجب متسقين من الناحية الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها باستخدام Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتصنيف اليدوي مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل أيضًا مرنة—تمكّن الممارسين من التوسع بسهولة إلى فئات أو نطاقات كائنات جديدة عن طريق استبدال مسحات الخلفية أو الكائنات بغيرها جديدة. بالنسبة لممارسي التعلم الآلي الذين يعملون في مجالات الروبوتات أو المركبات ذاتية القيادة أو الإدراك الحيوي، يبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون زيادة التكاليف. وهو يسد الفجوة بين المحاكاة والأداء في العالم الحقيقي، مما يتيح التكرار الأسرع والنشر الأكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي للتعلم الآلي في شركة John Deere\، حيث يطوّر نماذج تعلّم عميق لأنظمة الاستشعار بالليدار والصورة الملونة (RGB) في أنظمة حرجة من حيث السلامة وتعمل في الزمن الحقيقي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة الزمكانية\، كما يحمل تخصصًا فرعيًا في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، وكانت ورقة \(batter\|pitcher\)2vec الخاصة به فائزة بجائزة في مؤتمر MIT Sloan Sports Analytics Conference لعام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وقد تلقّت مستودعات GitHub الخاصة به—التي حازت مجتمعةً أكثر من 2\,100 نجمة—على استخدامها كنقطة بداية لأغراض البحث والإنتاج في العديد من المنظمات المختلفة\. **MothBox: جهاز رصد حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كوتميير عن تصميم أداة علمية جديدة ومثيرة مفتوحة المصدر، وهي Mothbox. يعد مشروع Mothbox مشروعًا فائزًا بالجوائز لمراقبة واسعة النطاق للحشرات من أجل التنوع البيولوجي. إنها جهاز منخفض التكلفة تم تطويره في الغابات الصعبة في بنما، ويقوم بالتقاط صور فائقة الدقة ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات الحشرية ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للتصنيع لتعميم هذه الأداة المهمة على مستوى العالم. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كوتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل Cartoon Network وIDEO وSmithsonian، ودرّس كأستاذ أكاديمي في جامعة سنغافورة الوطنية، وحتى تم تحويل بحثه إلى برنامج تلفزيوني (طرifo) باسم "Hacking the Wild"، تم توزيعه بواسطة Discovery Networks. في الوقت الحالي، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس ورشة عمل مختبرات Digital Naturalism Laboratories. في غابة جامبوا المطيرة في بنما، تجمع Dinalab بين العمل الميداني البيولوجي والتصميم التكنولوجي ضمن مجتمع من العلماء والفنيين والفنانين والمهندسين المحليين والدوليين ومُنقذي الحيوانات. وهو حاليًا مستشار طلابي كأستاذ مشارك في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** سمحت النماذج الأساسية بطريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أحدث الأبحاث المتعلقة بتمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب أو عبر عملية ضبط دقيق (fine-tuning). على وجه التحديد، سأناقش عملًا مشتركًا حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. من أجل التخلص من الحاجة إلى تدريب مخصص للمهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مشتق من نماذج بصرية مسبقة التدريب. سأناقش أيضًا عملًا مشتركًا حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) للإجابة الصحيحة على الأوامر التي تتطلب فهمًا شاملاً مكانياً وزمنياً: فالنماذج MLLMs تجد صعوبة في الإجابة على الأوامر التي تشير إلى 1) بيئة كاملة يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وتشير في نفس الوقت إلى 2) أفعال حدثت مؤخرًا ومشفرة في مقطع فيديو. لكن مثل هذا الفهم الشامل المكاني والزماني مهم للوكلاء العاملين في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات وضبط نموذج MLLM مجهز بمشعات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الأخيرة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شمباين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي والذكاء الاصطناعي التوليدي والرؤية الحاسوبية. حصل على بكالوريوس الهندسة الكهربائية وهندسة المعلومات من الجامعة التقنية في ميونيخ عام 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. بعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية في مواضيع فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. حصلت أطروحته للدكتوراه على ميدالية ETH، وفاز بحث فريقه بجائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تحولًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي أن يكتشف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ ويحلل مشكلات المحاصيل باستخدام صحة أوراق القهوة كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم ندرس كيف تكشف هذه النماذج عن الصدأ وأضرار المنقّاب في صور الأوراق. تشمل الجلسة سير عمل شاملًا عمليًا باستخدام أدوات FiftyOne مفتوحة المصدر للرؤية الحاسوبية، ويتناول تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وخبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) حاصلة على درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. تعمل على تطوير تقنيات هندسية متكاملة جديدة، بشكل أساسي في مجالات الرؤية الحاسوبية والروبوتات والتعلم الآلي المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.

المصدر:  meetup عرض المنشور الأصلي

موقع
F5HW+FGX, Vaiaku, Tuvalu
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.