انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول أحدث التطورات في مجال التقاء الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** فعالية افتراضية. [سجّل الدخول عبر زووم.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية وجود مجموعات بيانات ضخمة ومتنوعة ثلاثية الأبعاد. لكن جمع وتصنيف سحب نقاط ليدار من العالم الحقيقي بحجم كبير أمر مكلفٌ ومُرهقٌ زمنيًا، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم مشروع Paved2Paradise بديلًا اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع يولد مجموعات بيانات واقعية ومُصنفة تمامًا مع الحد الأدنى من الجهد البشري في التصنيف. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح الخلفية (مثل الحقول، الطرق، مواقع البناء) ومسح الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise تركيب عدد هائل من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح واسع النطاق للخلفية باستخدام ليدار، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف مضبوطة، (3) إدخال الكائنات داخل الخلفيات مع وضع وحجب يتماشيان مع القوانين الفيزيائية، و(4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتصنيف اليدوي مقارنةً بجمع مجموعة البيانات التقليدي. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل مرنة أيضًا — مما يسمح للممارسين بسهولة التوسع إلى فئات أو نطاقات كائنات جديدة عن طريق استبدال مسحات الخلفية أو الكائنات بمسحات جديدة. بالنسبة لممارسي التعلم الآلي العاملين في الروبوتات، أو المركبات المستقلة، أو أنظمة الإدراك الحرجة للسلامة، فإن Paved2Paradise يبرز مسارًا عمليًا نحو توسيع بيانات التدريب دون توسيع التكاليف. كما أنه يسد الفجوة بين المحاكاة والأداء في العالم الحقيقي، مما يتيح التكرار الأسرع والنشر الأكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي للتعلم الآلي في شركة John Deere\، حيث يطور نماذج التعلم العميق لأنظمة الليدار والرؤية بالألوان (RGB) في أنظمة تتطلب السلامة وتكون شديدة السرعة\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية\، ويحمل أيضًا تخصصًا فرعيًا في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، كما فاز ورقته \(batter\|pitcher\)2vec بجائزة في مؤتمر MIT Sloan Sports Analytics Conference عام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وقد تلقى مستودعات GitHub الخاصة به — التي حصلت مجتمعة على أكثر من 2\,100 نجمة — دعمًا كنقاط بداية لأبحاث وأكواد إنتاجية في العديد من المؤسسات المختلفة\. **MothBox: جهاز رصد حشرات منخفض التكلفة، مفتوح المصدر، وآلي** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية جديدة ومثيرة مفتوحة المصدر، وهي Mothbox. يُعد مشروع Mothbox فائزًا بالجوائز لمراقبة الحشرات على نطاق واسع من أجل التنوع البيولوجي. إنها جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، يقوم بالتقاط صور فائقة الدقة ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للتصنيع لتوزيع هذه الأداة المهمة عالميًا. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل Cartoon Network وIDEO وSmithsonian، ودرّس كأستاذ محاضر في الجامعة الوطنية السنغافورية، وحتى تحولت إحدى أبحاثه إلى سلسلة تلفزيونية (مضحكة) بعنوان "Hacking the Wild"، تم توزيعها بواسطة Discovery Networks. في الوقت الحالي، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس ورشة عمل مخبرية في موقع ميداني باسم Digital Naturalism Laboratories. في غابة الأمطار في جامبوا ببنما، يدمج Dinalab العمل الميداني البيولوجي مع الحرف التكنولوجية ضمن مجتمع من العلماء والفنيين والفنانين والمهندسين المحليين والدوليين، بالإضافة إلى متخصصي إعادة تأهيل الحيوانات. وهو حاليًا أيضًا مستشار للطلاب بصفته أستاذًا مرتبطًا في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من أسلوب جديد لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش الأبحاث الحديثة المتعلقة بتمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب أو عبر عملية ضبط دقيق (fine-tuning). على وجه التحديد، سأتناول العمل المشترك حول مشروع RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب مخصص للمهمة ومعالجة مقاطع الفيديو الطويلة بكفاءة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج رؤية مسبقة التدريب. سأناقش أيضًا العمل المشترك المتعلق بتمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الأوامر التي تتطلب فهمًا شاملاً مكانياً-زمنياً: إذ تعاني النماذج متعددة الوسائط من صعوبة في الإجابة على أوامر تشير إلى 1) بيئة كاملة يمكن لوكيل مزود بـ MLLM العمل فيها؛ وفي نفس الوقت تشير أيضًا إلى 2) إجراءات حديثة حدثت للتو ومُشفَّرة في مقطع فيديو. لكن مثل هذا الفهم الشامل المكاني-الزماني مهم للوكلاء الذين يعملون في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات وضبط دقيق لنموذج MLLM مزود بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للمشاهدات الأخيرة. *عن المتحدث* [أليكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شمباين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ومواضيع الرؤية الحاسوبية. حصل على درجة البكالوريوس والدبلوم في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونخ عام 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيوريخ عام 2014. بعد ذلك انضم إلى جامعة تورونتو كزميل باحث حتى عام 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية حول فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. وقد حصلت أطروحته للدكتوراه على ميدالية ETH، كما حصل بحث فريقه على جائزة NSF CAREER. **ما وراء المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ ثورة في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات في وقت مبكر بما يكفي لصنع فرق؟ يوضح هذا الحديث كيف يقوم كشف الشذوذ بتحديد وتحديد مواقع مشكلات المحاصيل باستخدام صحة أوراق القهوة كمثال أساسي. سنبدأ بالنظرية الأساسية، ثم ندرس كيف تقوم هذه النماذج باكتشاف الصدأ وأضرار المنّ في صور الأوراق. تشمل الجلسة سير عمل شاملًا عمليًا باستخدام أدوات الرؤية الحاسوبية المفتوحة المصدر FiftyOne، ويتناول تنسيق مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وتجربة عملية في تطبيق هذه الأساليب على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وهي تعمل على تطوير تقنيات هندسية متكاملة جديدة، خاصة في مجالات الرؤية الحاسوبية، والروبوتات، والتعلم الآلي المطبّق على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.