تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)63758343908483110
مجاني
المفضلة
مشاركة

15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)

addressF5HW+FGX, Vaiaku, Tuvalu

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول أحدث التطورات في مجال التقاء الذكاء الاصطناعي البصري بالزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل الدخول إلى Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية مجموعات بيانات ضخمة ومتنوعة ثلاثية الأبعاد. ولكن جمع وتصنيف سحب النقاط الليدارية من العالم الحقيقي بكميات كبيرة أمر مكلف وطويل، خاصة عندما تكون التصنيفات عالية الجودة ضرورية. يقدم مشروع Paved2Paradise بديلاً اقتصاديًا: خط أنابيب محاكاة ليدار قابل للتوسيع لإنشاء مجموعات بيانات واقعية ومكتملة التصنيف مع الحد الأدنى من الجهد البشري في التصنيف. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح الخلفية (مثل الحقول، الطرق، مواقع البناء) ومسح الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد عدد كبير من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار واسع للخلفية، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف خاضعة للرقابة، (3) إدخال الكائنات في الخلفيات مع وضع وحجب متسقين من الناحية الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها باستخدام Paved2Paradise تنتقل بفعالية إلى العالم الحقيقي، وتحقق أداءً قويًا في الكشف مع تقليل كبير في التصنيف اليدوي مقارنةً بطرق جمع البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل مرنة أيضًا — مما يسمح للممارسين بسهولة التوسع إلى فئات كائنات جديدة أو مجالات جديدة من خلال استبدال مسحات الخلفية أو الكائنات. بالنسبة لممارسي تعلم الآلات العاملين في مجالات الروبوتات، المركبات المستقلة، أو أنظمة الإدراك الحرجة للسلامة، يُبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون توسيع التكاليف. وهو يسد الفجوة بين الأداء في المحاكاة والأداء في العالم الحقيقي، مما يمكّن من التكرار الأسرع والنشر الأكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس تعلم آلي أول في شركة John Deere\، حيث يطور نماذج تعلم عميق للإدراك باستخدام الليدار والصورة الملونة (RGB) في أنظمة حرجة للسلامة وتعمل في الزمن الحقيقي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين رؤية الحاسوب والشبكات العصبية العميقة الزمكانية\، وحصل أيضًا على شهادة دراسات عليا في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، وكانت ورقة \(batter\|pitcher\)2vec الخاصة به فائزة بجائزة في مؤتمر MIT Sloan Sports Analytics لعام 2018\. كما ساهم برمجيات تعلم آلي في scikit\-learn وApache Solr\، وتم استخدام مستودعات GitHub الخاصة به — التي حصلت مجتمعةً على أكثر من 2\,100 نجمة — كنقطة بداية لأبحاث ورموز إنتاجية في العديد من المؤسسات المختلفة\. **MothBox: جهاز رصد حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية مثيرة جديدة ومفتوحة المصدر، وهي Mothbox. يُعد مشروع Mothbox مشروعًا فائزًا بجائزة لمراقبة واسعة النطاق للحشرات من أجل التنوع البيولوجي. وهو جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويقوم بالتقاط صور فائقة الدقة لتحديد مستويات التنوع البيولوجي تلقائيًا في الغابات والزراعة. بعد آلاف الملاحظات الحشرية ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نطور نسخة جديدة قابلة للتصنيع لنشارك هذه الأداة المهمة في جميع أنحاء العالم. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة كرتون نتورك، وIDEO، وسميثسونيان، ودرّس كبروفيسور على مسار الترقي الوظيفي في الجامعة الوطنية في سنغافورة، وحتى تم تحويل بحثه إلى سلسلة تلفزيونية (سخيفة) بعنوان "Hacking the Wild"، تم توزيعها بواسطة شبكة Discovery Networks. حاليًا، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس ورشة عمل مختبرات Digital Naturalism Laboratories. في غابة الأمطار في جامبوا ببنما، تدمج Dinalab العمل الميداني البيولوجي مع الصناعة التكنولوجية ضمن مجتمع من العلماء والفنانين والمهندسين ومتخصصي إعادة تأهيل الحيوانات المحليين والدوليين. وهو حاليًا مستشار للطلاب كبروفيسور مشارك في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب أو من خلال الضبط الدقيق (fine-tuning). على وجه التحديد، سأناقش عملًا مشتركًا حول مشروع RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلامات البصرية في مقاطع الفيديو الطويلة. للتخلص من الحاجة إلى تدريب خاص بكل مهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مشتق من نماذج رؤية مسبقة التدريب. كما سأناقش أيضًا عملًا مشتركًا حول تمكين النماذج الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الاستعلامات التي تتطلب فهمًا شاملاً مكانزمنيًا: تجد النماذج MLLMs صعوبة في الإجابة على استعلامات تشير إلى 1) البيئة بأكملها التي يمكن لوكيل مزود بـ MLLM العمل فيها؛ وتشير في نفس الوقت إلى 2) الإجراءات الأخيرة التي حدثت للتو والتي تم ترميزها في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكانزمني مهم للوكلاء العاملين في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات والضبط الدقيق لنموذج MLLM مزود بمشعات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شمباين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب. تلقى درجة البكالوريوس والدبلوم في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونخ عام 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ في عام 2014. بعد ذلك، انضم إلى جامعة تورونتو كزميل باحث ما بعد الدكتوراه حتى عام 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب، حيث شارك في تأليف العديد من الأوراق البحثية حول فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. تم منح أطروحته للدكتوراه وسام ETH، وفاز بحث فريقه بجائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تحولًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي أن يكتشف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ يُظهر هذا الحديث كيف يحدد كشف الشذوذ مشكلات المحاصيل ويحللها باستخدام صحة أوراق القهوة كمثال أساسي. سنبدأ بالنظرية الأساسية، ثم نفحص كيف تكتشف هذه النماذج الصدأ وأضرار المنجر في صور الأوراق. يشمل الجلسة سير عمل شاملاً عمليًا باستخدام مجموعة أدوات الرؤية الحاسوبية مفتوحة المصدر FiftyOne، ويتناول إدارة مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وتصور النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وخبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية وقطاعات أخرى. *عن المتحدث* [باولا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية وتعلم الآلة، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وهي تطور تقنيات هندسية متكاملة جديدة، بشكل رئيسي في مجالات الرؤية الحاسوبية، والروبوتات، وتعلم الآلة المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.

المصدر:  meetup عرض المنشور الأصلي

موقع
F5HW+FGX, Vaiaku, Tuvalu
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.