يعمل الجميع على بناء وكلاء الذكاء الاصطناعي - ولكن في المحور يقع النموذج اللغوي الكبير (LLM)، واختيار النموذiegel المناسب أمر بالغ الأهمية. ومع إطلاق نماذج جديدة كل أسبوع، كيف يمكننا اتخاذ قرارات مدروسة ومبنية على البيانات؟ في هذا الجلسة، سنغوص في موضوع اختيار النماذج اللغوية الكبيرة. وسنزود بنتائج دراسة اختبرت 15 نموذجًا رائدًا في مهام تلخيص الشيفرات البرمجية الواقعية، باستخدام مقاييس عملية مثل حجم الإخراج، زمن الاستجابة، التكلفة، الدقة، وكمية المعلومات المستفادة. نتوقع أن تقدم رؤى واضحة حول أداء النماذج الحالية فعليًا - وراء الاختبارات المعيارية والتضخيم الإعلامي - وما يعنيه ذلك بالنسبة لبناء أدوات مساعدة في البرمجة، ومساعدات المطورين، والوكلاء متعددي الوسائط.