تستفيد الخوارزميات الكمية من المبادئ الأساسية في ميكانيكا الكم—مثل التراكب، والتشابك، والتداخل—لأداء الحسابات بطرق لا يمكن للخوارزميات التقليدية تحقيقها. يسمح التراكب لوحدات البت الكميّة (اليوبتات) بالتمثيل المتزامن لحالات متعددة، مما يمكّن من استكشاف المسارات الحسابية بشكل متوازٍ. ويُدخل التشابك ارتباطات بين اليوبتات تتجاوز الحدود الكلاسيكية، ما يتيح توزيع ومعالجة المعلومات بطريقة غير محلية. ثم يستخدم التداخل الكمي لتضخيم السعات الاحتمالية للنتائج الصحيحة مع إلغاء تلك الخاصة بالنتائج الخاطئة. على عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكوسة (وحدة)، وبسبب نظرية عدم النسخ، لا يمكنها نسخ حالات كمية تعسفية. وبالتالي، تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع البيانات المؤقتة أو تنظيم تدفقات الحساب. إن نتائج الخوارزميات الكمية احتمالية بطبيعتها، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب عدة تشغيلات للحصول على إجابات ذات ثقة عالية. تعتمد العديد من الخوارزميات الكمية على العوامل—دوال صندوق أسود خاصة—لتوجيه عمليات البحث أو اتخاذ القرارات، كما في خوارزمية جروفر. ويمكن لهذه الخوارزميات توفير تسريعات دراماتيكية: فخوارزمية جروفر توفر مكاسب تربيعية في مهام البحث، بينما تقدم خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وفقدان التماسك، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمراً ضرورياً. باختصار، تمثل الخوارزميات الكمية تحولاً نموذجيًا في الحوسبة، تستفيد من موارد كمية فريدة لمعالجة المشكلات التي يصعب حلها باستخدام الأجهزة الكلاسيكية.