تستفيد الخوارزميات الكمية من المبادئ الأساسية لميكانيكا الكم—مثل التراكب، والتشابك، والتداخل—لأداء الحسابات بطرق لا يمكن للخوارزميات التقليدية تحقيقها. يسمح التراكب لوحدات البت الكمية (الكيوبتات) بالتمثيل المتزامن لحالات متعددة، مما يمكن استكشاف المسارات الحسابية بشكل متوازٍ. أما التشابك فيُدخل ارتباطات بين الكيوبتات تتجاوز الحدود الكلاسيكية، ما يتيح توزيع المعلومات ومعالجتها بطريقة غير محلية. ويُستخدم التداخل الكمي بعد ذلك لتضخيم سعات الاحتمالات للنتائج الصحيحة بينما يتم إلغاء النتائج الخاطئة. على عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكوسة (وحداتية)، وبسبب نظرية عدم النسخ، لا يمكنها نسخ حالات كمية تعسفية. ونتيجة لذلك، تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع البيانات المؤقتة أو تنظيم تدفقات الحساب. إن نتائج الخوارزميات الكمية احتمالية بطبيعتها، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب عدة تشغيلات للحصول على إجابات ذات ثقة عالية. تعتمد العديد من الخوارزميات الكمية على الدلائل—دوال صندوق أسود خاصة—لتوجيه عمليات البحث أو اتخاذ القرارات، كما هو الحال في خوارزمية جروفر. ويمكن لهذه الخوارزميات توفير تسريعات دراماتيكية: فخوارزمية جروفر توفر مكاسب تربيعية في مهام البحث، في حين توفر خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وفقدان التماسك، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا في النموذج الحسابي، حيث تستفيد من موارد كمية فريدة لمعالجة المشكلات التي يصعب حلها باستخدام الآلات الكلاسيكية.