تستفيد الخوارزميات الكمية من المبادئ الأساسية للديناميكا الكمية—مثل التراكب، والتشابك، والتداخل—لإجراء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح التراكب لوحدات البت الكمية (كيوبتات) بتمثيل حالات متعددة في آنٍ واحد، مما يمكن الاستكشاف المتوازي للمسارات الحسابية. ويؤدي التشابك إلى ظهور ارتباطات بين الكيوبتات تتجاوز الحدود الكلاسيكية، ما يسمح بتوزيع المعلومات ومعالجتها بطريقة غير محلية. ثم يستخدم التداخل الكمي لتعزيز السعات الاحتمالية للنتائج الصحيحة، مع إلغاء تلك الخاصة بالنتائج الخاطئة. وعلى عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكسية (وحدة)، وبسبب نظرية عدم النسخ، لا يمكنها نسخ حالات كمية تعسفية. ونتيجة لذلك، تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع بيانات مؤقتة أو تنظيم تدفقات الحوسبة. إن نتائج الخوارزميات الكمية احتمالية بطبيعتها، وتظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب تشغيلات متعددة للحصول على إجابات ذات ثقة عالية. تعتمد العديد من الخوارزميات الكمية على أوراكل — دوال صندوق أسود خاصة — لتوجيه عمليات البحث أو اتخاذ القرار، كما في خوارزمية غروفير. ويمكن لهذه الخوارزميات توفير تسريعات دراماتيكية: حيث توفر خوارزمية غروفير مكاسب تربيعية في مهام البحث، بينما تقدم خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء ولتفكك التماسك الكمي، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا نموذجيًا في الحوسبة، تستفيد من الموارد الكمية الفريدة لمعالجة المشكلات التي يصعب حلها باستخدام الآلات الكلاسيكية.