تستفيد الخوارزميات الكمية من المبادئ الأساسية للديناميكا الكمية—مثل التراكب، والتشابك، والتداخل—لإجراء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح التراكب لوحدات البت الكمية (اليوبيتات) بتمثيل حالات متعددة في آنٍ واحد، مما يمكن الاستكشاف المتوازي للمسارات الحسابية. ويُدخل التشابك علاقات ارتباط بين اليوبيتات تتجاوز الحدود الكلاسيكية، ما يتيح توزيع ومعالجة المعلومات بشكل غير محلي. ثم يستخدم التداخل الكمي لتكبير السعات الاحتمالية للنتائج الصحيحة مع إلغاء النتائج الخاطئة. وعلى عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكسية (وحداتية)، وبسبب نظرية عدم النسخ، لا يمكنها نسخ حالات كمية تعسفية. وبالتالي، تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع البيانات المؤقتة أو تنظيم تدفقات الحساب. إن نتائج الخوارزميات الكمية احتمالية بطبيعتها، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب تشغيلات متعددة للحصول على إجابات ذات ثقة عالية. تعتمد العديد من الخوارزميات الكمية على الدوال الصندوق الأسود الخاصة (الأنبياء) لتوجيه عمليات البحث أو اتخاذ القرارات، كما هو الحال في خوارزمية غروفير. ويمكن لهذه الخوارزميات أن توفر تسريعات دراماتيكية: فخوارزمية غروفير توفر مكاسب تربيعية في مهام البحث، في حين توفر خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وفقدان التماسك، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرين ضروريين. باختصار، تمثل الخوارزميات الكمية تحولًا جذريًا في مجال الحوسبة، حيث تستغل موارد كمية فريدة لمعالجة المشكلات التي يصعب حلها بالآلات الكلاسيكية.