تستفيد الخوارزميات الكمية من المبادئ الأساسية للميكانيكا الكمية—مثل التراكب، والتشابك، والتداخل—لأداء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح التراكب لوحدات البت الكمية (كيوبيتات) بالتمثيل المتزامن لحالات متعددة، مما يمكّن من استكشاف المسارات الحسابية بشكل متوازٍ. أما التشابك فيُدخل ارتباطات بين الكيوبيتات تتجاوز الحدود الكلاسيكية، ما يتيح توزيع المعلومات ومعالجتها بطريقة غير محلية. ثم يستخدم التداخل الكمي لتعزيز السعات الاحتمالية للنتائج الصحيحة مع إلغاء تلك الخاصة بالنتائج الخاطئة. على عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكسية (وحداتية)، وبسبب نظرية عدم النسخ لا يمكنها نسخ حالات كمية عشوائية. وبالتالي تتطلب تصاميم الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع البيانات المؤقتة أو تنظيم تدفقات الحساب. إن نتائج الخوارزميات الكمية احتمالية بطبيعتها، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب عدة تشغيلات للحصول على إجابات ذات ثقة عالية. تعتمد العديد من الخوارزميات الكمية على العوالم — وهي دوال صندوق أسود خاصة — لتوجيه عمليات البحث أو اتخاذ القرارات، كما في خوارزمية غروفر. يمكن لهذه الخوارزميات توفير تسريعات دراماتيكية: فخوارزمية غروفر توفر مكاسب تربيعية في مهام البحث، في حين تقدم خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء ولتفتت التماسك، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا نمطيًا في مجال الحوسبة، حيث تستفيد من الموارد الكمية الفريدة لمعالجة المشكلات التي يصعب حلها باستخدام الآلات الكلاسيكية.