تستفيد الخوارزميات الكمية من المبادئ الأساسية للميكانيكا الكمية—مثل التراكب، والتشابك، والتداخل—لأداء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح التراكب للبتات الكمية (الكيوبتات) بتمثيل حالات متعددة في آنٍ واحد، مما يمكن من استكشاف مسارات الحوسبة بشكل متوازٍ. ويُدخل التشابك علاقات ارتباط بين الكيوبتات تتجاوز الحدود الكلاسيكية، مما يسمح بتوزيع المعلومات ومعالجتها بطريقة غير محلية. ثم يستخدم التداخل الكمي لتكبير سعات الاحتمالات للنتائج الصحيحة، مع إلغاء تلك الخاصة بالنتائج الخاطئة. على عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكسية (وحدوية)، وبسبب نظرية عدم النسخ، لا يمكنها نسخ حالات كمية عشوائية. وبالتالي، تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع بيانات مؤقتة أو تنظيم تدفقات الحوسبة. تتسم نتائج الخوارزميات الكمية بطبيعتها الاحتمالية، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب العديد من المرات لتحقيق إجابات ذات ثقة عالية. تعتمد العديد من الخوارزميات الكمية على دوال صندوق أسود خاصة تُعرف باسم الأوراكل لتوجيه عمليات البحث أو اتخاذ القرارات، كما في خوارزمية جروفر. يمكن لهذه الخوارزميات تحقيق تسريعات دراماتيكية: فخوارزمية جروفر توفر مكاسب تربيعية في مهام البحث، في حين توفر خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وتفكك التماسك، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا نموذجيًا في الحوسبة، حيث تستفيد من موارد كمية فريدة لمعالجة مشكلات لا يمكن حلها بالآلات الكلاسيكية.