تستفيد الخوارزميات الكمية من المبادئ الأساسية في الميكانيكا الكمية—مثل التراكب، والتشابك، والتداخل—لأداء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح التراكب للبتات الكمية (الكيوبتات) بتمثيل حالات متعددة في آنٍ واحد، مما يمكّن من استكشاف مسارات الحوسبة بشكل متوازٍ. أما التشابك فيُدخل ارتباطات بين الكيوبتات تتجاوز الحدود الكلاسيكية، ما يتيح توزيع المعلومات ومعالجتها بشكل غير محلي. ثم يستخدم التداخل الكمي لتعزيز السعة الاحتمالية للنتائج الصحيحة مع إلغاء النتائج الخاطئة. على عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكسية (وحدوية)، وبسبب نظرية عدم الاستنساخ، لا يمكنها نسخ حالات كمية عشوائية. وبالتالي، تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع البيانات المؤقتة أو تنظيم تدفقات الحوسبة. تتسم نتائج الخوارزميات الكمية بطابع احتمالي بطبيعتها، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب العديد من المرات لتحقيق إجابات ذات ثقة عالية. تعتمد العديد من الخوارزميات الكمية على أوراكل (دوال صندوق أسود خاصة) لتوجيه عمليات البحث أو اتخاذ القرارات، كما في خوارزمية جروفر. يمكن أن توفر هذه الخوارزميات تسريعات دراماتيكية: فخوارزمية جروفر تقدم مكاسب تربيعية في مهام البحث، في حين تقدم خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وفقدان التماسك، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا نوعيًا في الحوسبة، حيث تستفيد من موارد كمية فريدة لمعالجة المشكلات التي يصعب حلها بالآلات الكلاسيكية.