تستفيد الخوارزميات الكمية من المبادئ الأساسية للديناميكا الكمية—مثل التراكب، والتشابك، والتداخل—لأداء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح التراكب للبتات الكمية (اليوبيتات) بتمثيل حالات متعددة في آنٍ واحد، مما يمكّن من استكشاف مسارات الحوسبة بشكل متوازٍ. ويُدخل التشابك ارتباطات بين اليوبيتات تتجاوز الحدود الكلاسيكية، ما يسمح بتوزيع المعلومات ومعالجتها بطريقة غير محلية. ثم يستخدم التداخل الكمي لتكبير السعات الاحتمالية للنتائج الصحيحة، بينما يتم إلغاء النتائج الخاطئة. وعلى عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكسية (وحدوية)، وبسبب نظرية عدم النسخ، لا يمكنها نسخ حالات كمية عشوائية. وبالتالي، تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع البيانات المؤقتة أو تنظيم تدفقات الحوسبة. تتسم نتائج الخوارزميات الكمية بطابع احتمالي بطبيعتها، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب تشغيلات متعددة للحصول على إجابات عالية الثقة. تعتمد العديد من الخوارزميات الكمية على الدلائل—وظائف صندوق أسود خاصة—لتوجيه عمليات البحث أو اتخاذ القرارات، كما في خوارزمية جروفر. يمكن لهذه الخوارزميات تحقيق تسريعات دراماتيكية: فخوارزمية جروفر توفر مكاسب تربيعية في مهام البحث، في حين تقدم خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وفقدان التماسك، مما يجعل التصحيح الخاطئ وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا جوهريًا في الحوسبة، حيث تستفيد من موارد كمية فريدة لمعالجة المشكلات التي يصعب حلها باستخدام الأجهزة الكلاسيكية.