**🚀 لقاء أبوظبي للتعلم الآلي – انطلاقة الموسم @ مقهى كولناغو** يسعدنا استئناف **لقاء أبوظبي للتعلم الآلي** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهدية** — مكان واسع ومرحب مثالي للعروض التقنية، وبناء العلاقات، والمشروبات الخفيفة. يجمع هذا الحدث الباحثين والممارسين وهواة **التعلم الآلي، الذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعية، ومعامل البحث الداعمة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا لتتعلمه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **الموقع:** مقهى كولناغو، جزيرة الهدية، أبوظبي * **التسجيل:** مجاني (مطلوب التأكيد على الحضور) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وتبادل العلاقات * **6:30 – 8:00 مساءً** → عروض تقنية (3 محاضرين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، ومناقشة مفتوحة، وتبادل علاقات غير رسمي **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق الفعلية من Jane Street** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً من البداية إلى النهاية وراء الحل الذي حصل على المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس مجموعة البيانات والإعداد بدقة واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج الكامل، وأسلط الضوء على النتائج المثيرة للاهتمام المستمدة من تطوير النماذج ضمن هذه الظروف. **نبذة قصيرة** باتريك يام هو باحث كمي وحاصل على لقب كبير الأساتذة في مسابقات كاجل. يحمل درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) وفي هندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في التعلم الآلي للتنبؤ المالي، ولديه خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مراد سمريتاب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** دفع التعلم الآلي تقدمًا كبيرًا في إدراك القيادة الذاتية، بدءًا من اكتشاف الكائنات وتتبعها وحتى دمج الحساسات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في المقاييس القياسية غالبًا ما تفشل في ظروف العالم الحقيقي. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنتناول خط سير الإدراك (الحساسات، الكشف، التتبع، الدمج) ونسلط الضوء على التحديات بما في ذلك الانحراف عن المجال، والمعايرة، والفجوة بين المحاكاة والواقع، والتوازن بين الدقة والأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، إلى جانب رؤى عملية حول سبب صعوبة «الـ 10٪ الأخيرة» من المشكلة. **نبذة قصيرة** مراد سمريتاب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يحمل بكالوريوس في الهندسة الحاسوبية (2021) وماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، ولديه خبرة عملية في دمج بيانات الليدار والكاميرا، واكتشاف الأجسام ثلاثية الأبعاد، وتتبع الكائنات المتعددة، والتنبؤ بالمسارات. ### **المحاضرة 3: فينشين و ما بعدها: نحو الاستدلال المالي الشفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تقوم بالاستدلال في المسائل المالية بطريقة شفافة وقابلة للتدقيق؟ في هذه المحاضرة، سأقدم فينشين، وهي مجموعة اختبار رمزية جديدة تقيم قدرات النمذجة اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. تغطي فينشين 54 موضوعًا متنوعًا — من حسابات الفائدة المركبة والضرائب إلى تحليل بيان التدفق النقدي — وتوفر بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية عالية الخطورة. من خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، تُسلط الضوء على طريقة تفكير النماذج — وأين تفشل. كما سأوضح الاتجاهات المستقبلية لتطوير نماذج مالية تركّز على الاستدلال وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الحقيقي. **نبذة قصيرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع البروفيسور بريسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. وقد نُشرت أعماله في أهم المؤتمرات في معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا منصب قائد لمبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، حيث ركّز أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة.