تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
[شخصيًا] لقاء أبوظبي للتعلم الآلي الموسم 6 الحلقة 163709869191169110
مجاني
المفضلة
مشاركة

[شخصيًا] لقاء أبوظبي للتعلم الآلي الموسم 6 الحلقة 1

addressC88X+XV Abu Dhabi - United Arab Emirates

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

**🚀 لقاء أبوظبي للتعلم الآلي – انطلاقة الموسم @ مقهى كولناجو** يسعدنا إعادة بدء **لقاء أبوظبي للتعلم الآلي** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناجو في جزيرة الهدية**—وهو مكان واسع وترحيبي مثالي للعروض التقنية، وبناء العلاقات، والمشروبات الخفيفة. سيجمع هذا الحدث الباحثين والمتخصصين وهواة مجالات **التعلم الآلي، الذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعية، ومختبرات الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو فقط مهتمًا بالذكاء الاصطناعي، فستجد شيئًا تستفيد منه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **الموقع:** مقهى كولناجو، جزيرة الهدية، أبوظبي * **التسجيل:** مجاني (يُطلب التسجيل المسبق) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وبناء العلاقات * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة، وتبادل غير رسمي **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: توقع بيانات السوق في الوقت الفعلي من جين ستريت** **المتحدث:** باتريك يام (باحث كمي) **الملخص** ستعرض هذه المحاضرة المنهجية الشاملة وراء الحل الذي حصل على المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس بيانات وظروف هذه المسابقة الواقع الحقيقي لبناء النماذج في الأسواق المالية الحديثة. سأشارك خط الإنتاج الكامل، وأسلط الضوء على النتائج المهمة المستخلصة من تطوير النماذج في هذه الظروف. **نبذة مختصرة** باتريك يام هو باحث كمي وحائز على لقب بطل كبرى مسابقات كاجل. يمتلك درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) والهندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في التعلم الآلي للتنبؤات المالية، مع خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، ونظم التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُراد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** لقد دفع التعلم الآلي تقدمًا كبيرًا في إدراك القيادة الذاتية، بدءًا من كشف الكائنات وتتبعها وصولًا إلى دمج الحساسات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في الاختبارات غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنغطي خط إنتاج الإدراك (الحساسات، الكشف، التتبع، الدمج)، ونسلط الضوء على التحديات مثل التحول بين المجالات، المعايرة، الفجوة بين المحاكاة والواقع، والتوازن بين الدقة والأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، إلى جانب رؤى عملية حول سبب كون "الـ 10٪ الأخيرة" من المشكلة غالبًا هي الأصعب. **نبذة مختصرة** مُراد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يحمل درجة البكالوريوس في الهندسة الحاسوبية (2021) والماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، مع خبرة عملية في دمج بيانات الليدار والكاميرا، وكشف الكائنات ثلاثية الأبعاد، وتتبع الكائنات المتعددة، وتوقع المسارات. ### **المحاضرة 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع التفكير في المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذه المحاضرة، سأقدم فينشين (FinChain)، وهي معيار رمزي جديد يقيّم قدرات النمذجة اللغوية الكبيرة على التفكير خطوة بخطوة في السيناريوهات المالية. يغطي فينشين 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل قائمة التدفقات النقدية — وهو بذلك يوفر بيئة اختبار شاملة للتفكير الرمزي في السياقات المالية الحساسة. من خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يُلقي الضوء على طريقة تفكير النماذج — وأين تفشل. سأعرض أيضًا الاتجاهات المستقبلية لتطوير نماذج مالية تركز على التفكير وتوائم بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة مختصرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ برسلاف ناكوف. يتركز بحثه على التفكير في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. نُشرت أعماله في أبرز المؤتمرات في معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا قيادة مبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، حيث ركزت أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ما الذي يمكن توقعه * **العروض:** عروض تقنية مبسطة حول أحدث موضوعات التعلم الآلي والذكاء الاصطناعي * **المجتمع:** فرصة للقاء نظرائك من الأوساط الأكاديمية، الصناعية، وأبحاث المؤسسات الحكومية * **المشروبات والوجبات الخفيفة:** تُقدَّم من قبل مقهى كولناجو (شكرًا لرعاة الحدث) * **أحضر معك:** فضولك، أسئلتك، وبطاقات العمل (إذا أردت التواصل) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسين في مجال التعلم الآلي والذكاء الاصطناعي * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيين المبتدئين المهتمين بالذكاء الاصطناعي التطبيقي * المهنيون في القطاعات الصناعية الذين يستكشفون تطبيقات التعلم الآلي

المصدر:  meetup عرض المنشور الأصلي

موقع
C88X+XV Abu Dhabi - United Arab Emirates
عرض الخريطة

meetup

قد يعجبك أيضا

كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.