تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
[في الموقع] لقاء أبوظبي لتعلم الآلة الموسم 6 الحلقة 163700658982658110
مجاني
المفضلة
مشاركة

[في الموقع] لقاء أبوظبي لتعلم الآلة الموسم 6 الحلقة 1

addressC88X+XV Abu Dhabi - United Arab Emirates

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

**🚀 لقاء أبوظبي لتعلم الآلة – انطلاقة الموسم @ مقهى كولناغو** يسعدنا إعادة انطلاق **لقاء أبوظبي لتعلم الآلة** مع موسم جديد من العروض التقديمية والاجتماعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهضيريّات** — وهو مكان واسع ومرحب مثالي للعروض التقنية، وبناء العلاقات، والمشروبات المنعشة. يجمع هذا الحدث الباحثين والمتخصصين وهواة **تعلم الآلة، الذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية والصناعية ومختبرات الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا لتعلمه وشخصًا لتتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **الموقع:** مقهى كولناغو، جزيرة الهضيريّات، أبوظبي * **التسجيل:** مجاني (يتطلب الحجز المسبق) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وبناء العلاقات * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة، وعلاقات غير رسمية **🎤 البرنامج** ### **العرض 1: الحل الذي احتل المركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق في الوقت الفعلي من Jane Street** **المتحدث:** باتريك يام (باحث كمي) **الملخص** يعرض هذا العرض التقني المنهجية الشاملة وراء الحل الذي احتل المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس مجموعة البيانات والإعداد بدقة واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج الكامل، وأسلط الضوء على النتائج المهمة المستخلصة من تطوير النماذج في هذه الظروف. **نبذة مختصرة** باتريك يام هو باحث كمي ومحترف كبير في مسابقات كاجل. يحمل درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) والهندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في تعلم الآلة للتنبؤ المالي، مع خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **العرض 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُرَاد سمرتياب (مهندس باحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** دفع تعلم الآلة تقدمًا كبيرًا في مجال إدراك القيادة الذاتية، من اكتشاف الكائنات وتتبعها إلى دمج الحساسات والتنبؤ. ومع ذلك، فإن النماذج التي تؤدي بشكل ممتاز في المعايير المرجعية غالبًا ما تفشل في الظروف الواقعية. يستعرض هذا العرض الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنتناول خط سير الإدراك (الحساسات، الاكتشاف، التتبع، الدمج)، ونسلط الضوء على التحديات بما في ذلك التحول بين المجالات، المعايرة، الفجوة بين المحاكاة والواقع، ومقايضات الدقة مقابل الأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام لمفهوم الإدراك الذاتي، بالإضافة إلى رؤى عملية حول سبب كون "الـ 10٪ الأخيرة" من المشكلة غالبًا هي الأصعب. **نبذة مختصرة** مُرَاد سمرتياب هو مهندس باحث في مختبر المركبات الذاتية (AVLab) في جامعة خليفة. يحمل درجة البكالوريوس في هندسة الحاسوب (2021) والماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، مع خبرة عملية في دمج الليدار مع الكاميرا، والكشف ثلاثي الأبعاد، وتتبع الكائنات المتعددة، وتوقع المسارات. ### **العرض 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع التفكير في المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذا العرض، سأقدم فينشين (FinChain)، وهي معيار رمزي جديد لتقييم قدرات النمذجة اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. وتشمل فينشين 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل قوائم التدفق النقدي — لتوفير بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية الحساسة. ومن خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، تسلط فينشين الضوء على طريقة تفكير النماذج — وأماكن فشلها. كما سأوضح الاتجاهات المستقبلية في تطوير نماذج مالية تركز على الاستدلال وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة مختصرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ بريسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. وقد نُشرت أعماله في أبرز المؤتمرات في مجال المعالجة اللغوية الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا منصب قائد لمبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في المعالجة اللغوية الطبيعية من جامعة ملبورن في ديسمبر 2024، وركّز أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ما الذي يمكن توقعه * **العروض:** عروض تقنية سهلة الفهم حول أحدث مواضيع تعلم الآلة والذكاء الاصطناعي * **المجتمع:** فرصة للقاء أقرانك من الأوساط الأكاديمية والصناعية وبحث وتطوير الحكومة * **المرطبات:** تُقدَّم من قبل مقهى كولناغو (شكرًا لرعاةنا) * **احضر معك:** الفضول، الأسئلة، وبطاقات العمل (إذا أردت التواصل) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسين في مجال تعلم الآلة والذكاء الاصطناعي * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيون المبتدئون المهتمون بالذكاء الاصطناعي التطبيقي * المهنيون في القطاعات الذين يستكشفون تطبيقات تعلم الآلة

المصدر:  meetup عرض المنشور الأصلي

موقع
C88X+XV Abu Dhabi - United Arab Emirates
عرض الخريطة

meetup

قد يعجبك أيضا

كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.