تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
[in-person] أبو ظبي لقاء تعلم الآلة الموسم 6 الحلقة 163804333063555110
مجاني
المفضلة
مشاركة

[in-person] أبو ظبي لقاء تعلم الآلة الموسم 6 الحلقة 1

addressC88X+XV Abu Dhabi - United Arab Emirates

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

**🚀 لقاء أبو ظبي لتّعلّم الآلي – انطلاقة الموسم @ مقهى كولناغو** يسعدنا استئناف **لقاء أبو ظبي لتّعلّم الآلي** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهضيريّة**—مكان واسع ومرحب مثالي للعروض التقنية، وبناء العلاقات، والاستمتاع بالمشروبات. يجمع هذا الحدث الباحثين والمتخصصين وهواة **تعلم الآلة، الذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعة، ومعامل البحث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو فقط فضوليًا بشأن الذكاء الاصطناعي، فستجد شيئًا تستفيد منه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناغو، جزيرة الهضيريّة، أبو ظبي * **التسجيل:** مجاني (مطلوب التأكيد على الحضور) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وتبادل المعلومات * **6:30 – 8:00 مساءً** → العروض التقنية (3 محاضرين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، ومناقشة مفتوحة، وتبادل غير رسمي للمعلومات **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق الفعلية من Jane Street** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً من البداية إلى النهاية وراء الحل الذي احتل المركز الثاني في مسابقة كاجل Jane Street Real-Time Market Data Forecasting. تعكس مجموعة البيانات والإعداد بدقة واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط أنابيب العمل بالكامل، وأسلط الضوء على الاستنتاجات المهمة المستمدة من تطوير النماذج ضمن هذه الشروط. **نبذة قصيرة** باتريك يام هو باحث كمي وحاصل على لقب كبير أساتذة المسابقات في كاجل. يحمل درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) والهندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في تعلم الآلة للتنبؤ المالي، ويمتلك خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: تحديات إدراك القيادة الذاتية** **المتحدث:** مراد سمريتاب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** دفع تعلم الآلة تقدمًا كبيرًا في مجال إدراك القيادة الذاتية، بدءًا من كشف الكائنات وتتبعها وصولاً إلى دمج الحساسات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في الاختبارات غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنغطي خط أنابيب الإدراك (الحساسات، الكشف، التتبع، الدمج) ونسلط الضوء على التحديات مثل انتقال المجال، المعايرة، الفجوة بين المحاكاة والواقع، والتوازن بين الدقة والأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، بالإضافة إلى رؤى عملية حول سبب صعوبة تحقيق «الـ 10٪ الأخيرة» من المشكلة. **نبذة قصيرة** مراد سمريتاب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يحمل بكالوريوس في الهندسة الحاسوبية (2021) وماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في مجال القيادة الذاتية، ولديه خبرة عملية في دمج بيانات الليدار والكاميرا، وكشف الأجسام ثلاثية الأبعاد، وتتبع الكائنات المتعددة، والتنبؤ بالمسارات. ### **المحاضرة 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع التفكير في المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذه المحاضرة، سأقدم فينشين، وهو معيار رمزي جديد يقيّم قدرة النماذج اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. ويغطي فينشين 54 موضوعًا متنوعًا — من حسابات الفائدة المركبة والضرائب إلى تحليل قائمة التدفق النقدي — ليوفر بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية الحساسة. من خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يُسلط الضوء على طريقة تفكير النماذج — وأين تفشل. كما سأوضح الاتجاهات المستقبلية في تطوير نماذج مالية تركّز على الاستدلال وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة قصيرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع البروفيسور بريسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. نُشرت أعماله في أهم المؤتمرات في مجال معالجة اللغة الطبيعية مثل ACL و EMNLP و NAACL، ويشغل حاليًا منصب قائد لمبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، وركزت أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ماذا تتوقع * **العروض:** عروض تقنية وسهلة الفهم حول أحدث المواضيع في تعلم الآلة والذكاء الاصطناعي * **المجتمع:** فرصة للقاء نظرائك من الأوساط الأكاديمية، والصناعة، وأبحاث المؤسسات الحكومية * **المشروبات:** يتم توفيرها من قبل مقهى كولناغو (شكرًا لرعاةنا) * **احضر معك:** الفضول، الأسئلة، وبطاقات العمل (إذا رغبت في التواصل) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسين في مجال تعلم الآلة والذكاء الاصطناعي * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيين المبتدئين المهتمين بالذكاء الاصطناعي التطبيقي * المهنيون في الصناعة الذين يستكشفون تطبيقات تعلم الآلة

المصدر:  meetup عرض المنشور الأصلي

موقع
C88X+XV Abu Dhabi - United Arab Emirates
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.