**🚀 لقاء أبو ظبي لتّعَلُّمِ الآلة – انطلاق الموسم @ مقهى كولناغو** يسعدنا أن نستهل من جديد **لقاء أبو ظبي لتّعَلُّمِ الآلة** بموسم جديد من المحاضرات والاجتماعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهديريّة**—مكان واسع ومرحّب به مثالي للعروض التقنية، والتواصل، والاستمتاع بالمشروبات. سيجمع هذا الحدث الباحثين والممارسين وهواة **تعلم الآلة، والذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعة، ومعامل الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو فقط فضوليًا بشأن الذكاء الاصطناعي، فستجد شيئًا تستفيد منه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **الموقع:** مقهى كولناغو، جزيرة الهديريّة، أبو ظبي * **التسجيل:** مجاني (مطلوب التأكيد على الحضور) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل والتواصل * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة وتواصل غير رسمي **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: تنبؤ بيانات السوق الفورية من Jane Street** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة النهج الشامل من البداية إلى النهاية وراء حلّي الذي حصل على المركز الثاني في مسابقة كاجل Jane Street Real-Time Market Data Forecasting. تعكس مجموعة البيانات والإعداد بشكل وثيق واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج الكامل، وأسلط الضوء على النتائج المثيرة للاهتمام المستخلصة من تطوير النماذج في هذه الظروف. **نبذة قصيرة** باتريك يام هو باحث كمي وحائز على لقب كابتن كبار المتنافسين في كاجل. حاصل على درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) وفي هندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في تعلم الآلة للتنبؤ المالي، ويملك خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ الفورية. وقد فاز بعدة ميداليات ذهبية وفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُرَاد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** دفع التعلّم الآلي تقدّمًا كبيرًا في مجال إدراك القيادة الذاتية، بدءًا من كشف الكائنات وتتبّعها وصولاً إلى دمج المستشعرات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في الاختبارات غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في إدراك القيادة الذاتية. سنغطي خط سير الإدراك (المستشعرات، الكشف، التتبّع، الدمج)، ونسليط الضوء على التحديات مثل انتقال المجال، المعايرة، فجوة المحاكاة مقابل الواقع، والتوازن بين الدقة والأداء الفوري. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، بالإضافة إلى رؤى عملية حول سبب كون "الـ 10٪ الأخيرة" من المشكلة هي الأصعب غالبًا. **نبذة قصيرة** مُرَاد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) في جامعة خليفة. يحمل درجة البكالوريوس في هندسة الحاسوب (2021) والماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ للقيادة الذاتية، ولديه خبرة عملية في دمج ليزر-كاميرا، وكشف ثلاثي الأبعاد، وتتبع الكائنات المتعددة، والتنبؤ بالمسارات. ### **المحاضرة 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تقوم بالاستدلال في المسائل المالية بطريقة شفافة وقابلة للمراجعة؟ في هذه المحاضرة، سأقدم فينشين، وهي معيار رمزي جديد لتقييم قدرات النمذجة اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. تغطي فينشين 54 موضوعًا متنوعًا — من حسابات الفائدة المركبة والضرائب إلى تحليل قائمة التدفق النقدي — وتوفّر بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية عالية الخطورة. ومن خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، تكشف فينشين عن طريقة تفكير النماذج — وأين تفشل. كما سأوضح الاتجاهات المستقبلية في تطوير نماذج مالية تركّز على الاستدلال وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الحقيقي. **نبذة قصيرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع البروفيسور بريسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. وقد تم نشر أعماله في أهم المؤتمرات في مجال معالجة اللغة الطبيعية مثل ACL و EMNLP و NAACL، وهو حاليًا يقود مبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، حيث ركّز أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة.