**🚀 لقاء أبوظبي لتخصص تعلم الآلة – انطلاقة الموسم @ مقهى كولناغو** يسعدنا استئناف **لقاء أبوظبي لتخصص تعلم الآلة** بموسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهديريّات** – مكان واسع وترحيبي مثالي للعروض التقنية، وبناء العلاقات، والمشروبات الخفيفة. يجمع هذا الحدث الباحثين والمتخصصين وهواة **تعلم الآلة، والذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعة، ومعامل الأبحاث المدعومة من الحكومة. سواء كنت طالبًا، أو مهندسًا، أو باحثًا، أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا لتتعلمه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناغو، جزيرة الهديريّات، أبوظبي * **التسجيل:** مجانًا (يُشترط التسجيل المسبق) (بحد أقصى 50 مشاركًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وتبادل المعلومات * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة، وتبادل معلومات غير رسمي **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق في الوقت الفعلي من Jane Street** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة منهجية شاملة من البداية إلى النهاية وراء الحل الذي حصل على المركز الثاني في مسابقة كاجل Jane Street للتنبؤ ببيانات السوق في الوقت الفعلي. تعكس مجموعة البيانات والإعداد الواقع الحقيقي لبناء نماذج للأسواق المالية الحديثة. سأشارك خط أنابيب العمل بالكامل، وأسلط الضوء على النتائج المثيرة للاهتمام المستخلصة من تطوير النماذج في هذه الظروف. **نبذة قصيرة** باتريك يام هو باحث كمي وحاصل على لقب بطل كبار في مسابقات كاجل. يمتلك درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) وهندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في تعلم الآلة للتنبؤات المالية، وله خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُراد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** أدى التعلم الآلي إلى تقدُّم كبير في إدراك القيادة الذاتية، بدءًا من كشف الكائنات وتتبعها، وصولًا إلى دمج الحساسات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في المعايير المرجعية غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنتناول خط أنابيب الإدراك (الحساسات، الكشف، التتبع، الدمج) ونسلط الضوء على التحديات مثل الانتقال بين المجالات، ومعايرة الأجهزة، والفجوة بين المحاكاة والواقع، ومقايضات الأداء بين الدقة والأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام عالٍ لإدراك القيادة الذاتية، إلى جانب رؤى عملية حول سبب كون "الـ 10٪ الأخيرة" من المشكلة غالبًا هي الأصعب. **نبذة قصيرة** مُراد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يمتلك درجة البكالوريوس في هندسة الحاسوب (2021) والماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ للقيادة الذاتية، ولديه خبرة عملية في دمج بيانات الليدار مع الكاميرا، وكشف الأجسام ثلاثية الأبعاد، وتتبع الكائنات المتعددة، والتنبؤ بالمسارات. ### **المحاضرة 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع التفكير في المشكلات المالية بطريقة شفافة وقابلة للمراجعة؟ في هذه المحاضرة، سأقدم فينشين (FinChain)، وهي معيار رمزي جديد لتقييم قدرات النمذجة اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. وتشمل فينشين 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل قائمة التدفقات النقدية — وتوفر بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية الحساسة. ومن خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، تسلط الضوء على طريقة تفكير النماذج — وأين تفشل. كما سأحدد الاتجاهات المستقبلية لتطوير نماذج مالية تركّز على الاستدلال وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة قصيرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ برسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. وقد نُشرت أعماله في أبرز المؤتمرات في مجال معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا مناصب قيادية في مبادرات جديدة تتعلق بالاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، وركّز أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة.