**🚀 لقاء أبوظبي لتّعلم الآلة – انطلاقة الموسم @ مقهى كولناغو** يسعدنا استئناف **لقاء أبوظبي لتّعلم الآلة** بموسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهديرة**، وهو مكان واسع وترحيبي، مثالي للعروض التقنية، وبناء العلاقات، والمشروبات المنعشة. يجمع هذا الحدث الباحثين والمتخصصين وهواة **تعلم الآلة، والذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعية، ومعامل الأبحاث المدعومة من الحكومة. سواء كنت طالبًا، أو مهندسًا، أو باحثًا، أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا لتتعلمه وشخصًا لتتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناغو، جزيرة الهديرة، أبوظبي * **التسجيل:** مجانًا (يُشترط التسجيل المسبق) (بحد أقصى 50 مشاركًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وبناء العلاقات * **6:30 – 8:00 مساءً** → عروض تقنية (ثلاثة متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة، وتبادل غير رسمي للاتصالات **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق في الوقت الفعلي من جين ستريت** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً من البداية إلى النهاية وراء الحل الذي حصل على المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس مجموعة البيانات والإعداد بشكل وثيق واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج بالكامل، وأسلط الضوء على النتائج المثيرة للاهتمام المستمدة من تطوير النماذج في هذه الظروف. **نبذة قصيرة** باتريك يام هو باحث كمي وحائز على لقب كبير أساتذة مسابقات كاجل. يمتلك درجتي ماجستير في علوم البيانات والتحليلات (جامعة كارديف، المملكة المتحدة) والهندسة النقلية (جامعة هونغ كونغ). يتخصص باتريك في تعلم الآلة للتنبؤات المالية، وله خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُرَاد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** لقد دفع التعلم الآلي تقدمًا كبيرًا في إدراك القيادة الذاتية، بدءًا من كشف الكائنات وتتبعها، وصولًا إلى دمج المستشعرات والتنبؤ. ومع ذلك، فإن النماذج التي تؤدي بشكل ممتاز في الاختبارات القياسية غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنتناول خط سير الإدراك (المستشعرات، الكشف، التتبع، الدمج) ونسلط الضوء على التحديات بما في ذلك انتقال المجال، المعايرة، الفجوة بين المحاكاة والواقع، والتوازن بين الدقة والأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، إلى جانب رؤى عملية حول سبب كون "الـ 10٪ الأخيرة" من المشكلة غالبًا هي الأصعب. **نبذة قصيرة** مُرَاد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) في جامعة خليفة. يحمل درجة البكالوريوس في الهندسة الحاسوبية (2021) والماجستير في علوم الحاسوب (2023)، كلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، ولديه خبرة عملية في دمج ليزر-كاميرا، وكشف ثلاثي الأبعاد، وتتبع الكائنات المتعددة، والتنبؤ بالمسار. ### **المحاضرة 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع التفكير في المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذه المحاضرة، سأقدم فينشين (FinChain)، وهي معيار رمزي جديد يقيّم قدرات النمذجة اللغوية الكبيرة على التفكير خطوة بخطوة في السيناريوهات المالية. يغطي فينشين 54 موضوعًا متنوعًا — من حسابات الفائدة المركبة والضرائب إلى تحليل بيانات التدفق النقدي — ليشكّل بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية عالية المخاطر. من خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يسلط الضوء على طريقة تفكير النماذج — وأين تفشل. سأعرض أيضًا الاتجاهات المستقبلية لتطوير نماذج مالية تركز على الاستدلال، وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الحقيقي. **نبذة قصيرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ برسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. وقد نُشرت أعماله في أبرز المؤتمرات في معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا منصب قائد لمبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، ركزت فيها أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ماذا تتوقع * **العروض:** عروض تقنية سهلة الفهم حول أحدث موضوعات تعلم الآلة والذكاء الاصطناعي * **المجتمع:** فرصة للقاء أقرانك من الأوساط الأكاديمية، والصناعية، وبحث وتطوير الحكومة * **المرطبات:** يوفرها مقهى كولناغو (شكرًا لرعاةنا) * **أحضر معك:** الفضول، الأسئلة، وبطاقات العمل (إذا أردت التواصل) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسين في مجال تعلم الآلة والذكاء الاصطناعي * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيين المبتدئين المهتمين بالذكاء الاصطناعي التطبيقي * المهنيون في القطاعات الذين يستكشفون تطبيقات تعلم الآلة