تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
[في الموقع] لقاء أبوظبي للتعلم الآلي الموسم 6 الحلقة 163782110424834110
مجاني
المفضلة
مشاركة

[في الموقع] لقاء أبوظبي للتعلم الآلي الموسم 6 الحلقة 1

addressC88X+XV Abu Dhabi - United Arab Emirates

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

**🚀 لقاء أبوظبي للتعلم الآلي – انطلاقة الموسم @ مقهى كولناغو** يسعدنا إعادة بدء **لقاء أبوظبي للتعلم الآلي** مع موسم جديد من العروض التقديمية والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهضيريّة** — مكان واسع وترحيبي، مثالي للعروض التقنية، وبناء العلاقات، والاستمتاع بالمشروبات. يجمع هذا الحدث الباحثين والمتخصصين وهواة **التعلم الآلي، الذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، الصناعية، ومختبرات الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا، أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا تستفيد منه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناغو، جزيرة الهضيريّة، أبوظبي * **التسجيل:** مجاني (يتطلب التأكيد) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وبناء العلاقات * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة، وعلاقات غير رسمية **🎤 البرنامج** ### **العرض 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق في الوقت الفعلي من Jane Street** **المتحدث:** باتريك يام (باحث كمي) **الملخص** يعرض هذا الحديث النهج الشامل وراء حلّي الذي احتل المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس مجموعة البيانات والإعداد بشكل وثيق واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج الكامل، وأسلط الضوء على الاستنتاجات المهمة المستمدة من تطوير النماذج ضمن هذه الظروف. **نبذة مختصرة** باتريك يام هو باحث كمي ومحترف كبير في مسابقات كاجل. يحمل درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) وفي هندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في التعلم الآلي للتنبؤ المالي، ويتمتع بخبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **العرض 2: من المختبر إلى الطريق: تحديات إدراك القيادة الذاتية** **المتحدث:** مراد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** حقق التعلم الآلي تقدمًا كبيرًا في مجال إدراك القيادة الذاتية، بدءًا من اكتشاف الكائنات وتتبعها، وحتى دمج المستشعرات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في الاختبارات غالبًا ما تفشل في الظروف الواقعية. يستعرض هذا الحديث الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنغطي خط سير الإدراك (المستشعرات، الكشف، التتبع، الدمج)، ونسلط الضوء على التحديات بما في ذلك التحول بين المجالات، المعايرة، الفجوة بين المحاكاة والواقع، والتوازن بين الدقة والأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحاضرين بفهم عام لإدراك القيادة الذاتية، إلى جانب رؤى عملية حول سبب صعوبة تحقيق "الـ 10٪ الأخيرة" من المشكلة. **نبذة مختصرة** مراد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يحمل درجة البكالوريوس في هندسة الحاسوب (2021) والماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، ولديه خبرة عملية في دمج بيانات الليدار والكاميرا، واكتشاف الكائنات ثلاثية الأبعاد، وتتبع الكائنات المتعددة، وتنبؤ المسارات. ### **العرض 3: FinChain وما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تقوم بالاستدلال في المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذا الحديث، سأقدم FinChain، وهي معيار رمزي جديد يُقيّم قدرات النمذجة اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. ويغطي FinChain 54 موضوعًا متنوعًا — من حسابات الفائدة المركبة والضرائب إلى تحليل قائمة التدفقات النقدية — ليشكل بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية عالية الخطورة. ومن خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يوضح كيف تفكر النماذج — وأين تفشل. كما سأحدد الاتجاهات المستقبلية لتطوير نماذج مالية تركّز على الاستدلال وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة مختصرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ بريسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. وقد تم نشر أعماله في أهم المؤتمرات في معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، وهو حاليًا يقود مبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، وكان موضوع أطروحته يتعلق بتوليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة.

المصدر:  meetup عرض المنشور الأصلي

موقع
C88X+XV Abu Dhabi - United Arab Emirates
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.