تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
[شخصيًا] لقاء أبوظبي للتعلم الآلي الموسم 6 الحلقة 163767351768065110
مجاني
المفضلة
مشاركة

[شخصيًا] لقاء أبوظبي للتعلم الآلي الموسم 6 الحلقة 1

addressC88X+XV Abu Dhabi - United Arab Emirates

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

**🚀 لقاء أبوظبي للتعلم الآلي – انطلاقة الموسم @ مقهى كولناغو** يسعدنا استئناف **لقاء أبوظبي للتعلم الآلي** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهضيريّات**—مَوقع واسع وترحيبي مثالي للعروض التقنية، وبناء العلاقات، والاستمتاع بالمشروبات المنعشة. سيجمع هذا الحدث الباحثين والمهنيين وهواة مجالات **التعلم الآلي، الذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، الصناعية، ومختبرات الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا، أو فقط فضوليًا بشأن الذكاء الاصطناعي، فستجد شيئًا لتتعلمه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناغو، جزيرة الهضيريّات، أبوظبي * **التسجيل:** مجاني (مطلوب التأكيد على الحضور) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل، وبناء العلاقات * **6:30 – 8:00 مساءً** → عروض تقنية (3 محاضرين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة، وتبادل غير رسمي للعلاقات **🎤 البرنامج** ### **المحاضرة 1: الحل الذي احتل المركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق الفورية لـ Jane Street** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً يشرح الحل الذي احتل المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس مجموعة البيانات والإعداد بدقة واقع بناء النماذج الخاصة بالأسواق المالية الحديثة. سأشارك خط الإنتاج الكامل، وأسلط الضوء على النتائج المهمة التي تم التوصل إليها أثناء تطوير النماذج ضمن هذه الظروف. **نبذة قصيرة** باتريك يام هو باحث كمي وحاصل على لقب كبير في مسابقات كاجل. حاصل على درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) وفي هندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في التعلم الآلي للتنبؤ المالي، ولديه خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ الفوري. وقد فاز بعدة ميداليات ذهبية وفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: تحديات إدراك القيادة الذاتية** **المتحدث:** مراد سمريتاب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** دفع التعلم الآلي تقدمًا كبيرًا في مجال إدراك القيادة الذاتية، بدءًا من اكتشاف الكائنات وتتبعها، وصولاً إلى دمج المستشعرات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً ممتازًا في الاختبارات غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنتناول خط أنابيب الإدراك (المستشعرات، الكشف، التتبع، الدمج)، ونسلط الضوء على التحديات مثل تحوّل المجال، المعايرة، فجوات المحاكاة مقابل الواقع، والتوازن بين الدقة والأداء الفوري. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، بالإضافة إلى رؤى عملية حول سبب صعوبة "الـ 10٪ الأخيرة" من المشكلة. **نبذة قصيرة** مراد سمريتاب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يحمل بكالوريوس في هندسة الحاسوب (2021) وماجستير في علوم الحاسوب (2023)، وكلا الشهادتين من جامعة خليفة. تتركز أبحاثه على الإدراك والتنبؤ في القيادة الذاتية، ولديه خبرة عملية في دمج بيانات الليدار مع الكاميرا، والكشف ثلاثي الأبعاد، وتتبع الكائنات المتعددة، والتنبؤ بالمسارات. ### **المحاضرة 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع التفكير في المشكلات المالية بطريقة شفافة وقابلة للمراجعة؟ في هذه المحاضرة، سأقدم فينشين (FinChain)، وهو معيار رمزي جديد يقيّم قدرة النماذج اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. ويغطي فينشين 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل قائمة التدفق النقدي — ليشكّل بذلك بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية ذات المخاطر العالية. ومن خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يُلقي الضوء على طريقة تفكير النماذج — وأماكن فشلها. كما سأطرح أيضًا الاتجاهات المستقبلية لتطوير نماذج مالية تركّز على الاستدلال وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الحقيقي. **نبذة قصيرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ برسلاف ناكوف. تتركز أبحاثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي وفحص الحقائق. نُشرت أعماله في أهم المؤتمرات في معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويشغل حاليًا منصب قائد لمبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، وكان عنوان أطروحته التوليد التلقائي للقصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ما الذي يمكن توقعه * **المحاضرات:** عروض تقنية ولكن سهلة الفهم حول أحدث مواضيع التعلم الآلي / الذكاء الاصطناعي * **المجتمع:** فرصة للقاء الزملاء من الأوساط الأكاديمية، الصناعية، ووحدات البحث والتطوير الحكومية * **المشروبات والوجبات الخفيفة:** يتم توفيرها من قبل مقهى كولناغو (شكرًا لرعاةنا) * **أحضر معك:** الفضول، الأسئلة، وبطاقات العمل (إذا رغبت في بناء شبكة علاقات) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسين في مجال التعلم الآلي / الذكاء الاصطناعي * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيون المبتدئون المهتمون بالذكاء الاصطناعي التطبيقي * المهنيون في القطاعات الذين يستكشفون تطبيقات التعلم الآلي

المصدر:  meetup عرض المنشور الأصلي

موقع
C88X+XV Abu Dhabi - United Arab Emirates
عرض الخريطة

meetup

قد يعجبك أيضا

كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.