**🚀 لقاء أبوظبي للتعلم الآلي – انطلاقة الموسم @ مقهى كولناغو** يسعدنا إعادة إطلاق **لقاء أبوظبي للتعلم الآلي** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهدية**—وهو مكان واسع ومرحب مثالي للعروض التقنية، وتمكين التواصل، وتوفير المرطبات. يجمع هذا الحدث الباحثين والمتخصصين وهواة **التعلم الآلي، والذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعة، ومعامل الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو مجرد شخص مهتم بالذكاء الاصطناعي، فستجد شيئًا لتتعلمه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناغو، جزيرة الهدية، أبوظبي * **التسجيل:** مجاني (يُطلب التأكيد بالحضور) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل والتواصل * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة وتواصل غير رسمي **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: توقعات بيانات السوق في الوقت الفعلي من Jane Street** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً يشرح الحل الذي حصل على المركز الثاني في مسابقة كاجل Jane Street للتنبؤ ببيانات السوق في الوقت الفعلي. تعكس مجموعة البيانات والإعداد بدقة واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط الإنتاج الكامل، مع تسليط الضوء على النتائج المثيرة للاهتمام المستمدة من تطوير النماذج في هذه الظروف. **نبذة مختصرة** باتريك يام هو باحث كمي وحاصل على لقب بطل كبرى مسابقات كاجل. يمتلك درجتي ماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) وهندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في التعلم الآلي للتنبؤ المالي، ولديه خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُرَاد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** لقد دفع التعلم الآلي تقدمًا كبيرًا في إدراك القيادة الذاتية، بدءًا من اكتشاف الكائنات وتتبعها، وصولاً إلى دمج الحساسات والتنبؤ. ومع ذلك، فإن النماذج التي تؤدي بشكل ممتاز في المعايير المرجعية غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في إدراك القيادة الذاتية. سنتناول خط سير الإدراك (الحساسات، الكشف، التتبع، الدمج)، ونسلط الضوء على التحديات بما في ذلك انحراف المجال، المعايرة، الفجوة بين المحاكاة والواقع، والتوازن بين الدقة والأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام على مستوى عالٍ لإدراك القيادة الذاتية، بالإضافة إلى رؤى عملية حول سبب كون "الـ 10٪ الأخيرة" من المشكلة هي الأصعب غالبًا. **نبذة مختصرة** مُرَاد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يحمل بكالوريوس في هندسة الحاسوب (2021) وماجستير في علوم الحاسوب (2023)، كلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ للقيادة الذاتية، ولديه خبرة عملية في دمج ليزر الكاميرا، والكشف ثلاثي الأبعاد، وتتبع الكائنات المتعددة، وتوقع المسارات. ### **المحاضرة 3: فينشين و ما بعدها: نحو الاستدلال المالي الشفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع التفكير في المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذه المحاضرة، سأقدم فينشين، وهي معيار رمزي جديد لتقييم قدرات النمذجة اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. وتشمل فينشين 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل بيانات التدفق النقدي — وهي توفر بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية ذات المخاطر العالية. من خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، تسلط الضوء على طريقة تفكير النماذج — وأين تفشل. كما سأحدد الاتجاهات المستقبلية لتطوير نماذج مالية تركّز على الاستدلال وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة مختصرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ برسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. وقد نُشرت أعماله في أبرز المؤتمرات في معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، ويتولى حاليًا مبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، وركّز أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ما الذي يمكن توقعه * **العروض:** عروض تقنية ولكن سهلة الفهم حول أحدث موضوعات التعلم الآلي والذكاء الاصطناعي * **المجتمع:** فرصة للقاء الأقران من الأوساط الأكاديمية، والصناعة، ووحدات البحث والتطوير الحكومية * **المرطبات:** تُقدَّم من قبل مقهى كولناغو (شكرًا لرعاةنا) * **احضر معك:** الفضول، الأسئلة، وبطاقات العمل (إذا أردت التواصل) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسين في مجال التعلم الآلي والذكاء الاصطناعي * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيين المبتدئين المهتمين بالذكاء الاصطناعي التطبيقي * المهنيين في القطاعات المختلفة الذين يستكشفون تطبيقات التعلم الآلي