تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
[حضور شخصي] لقاء أبوظبي للتعلم الآلي الموسم 6 الحلقة 163769226177154110
مجاني
المفضلة
مشاركة

[حضور شخصي] لقاء أبوظبي للتعلم الآلي الموسم 6 الحلقة 1

addressC88X+XV Abu Dhabi - United Arab Emirates

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

**🚀 لقاء أبوظبي للتعلم الآلي – انطلاقة الموسم @ مقهى كولناغو** يسعدنا استئناف **لقاء أبوظبي للتعلم الآلي** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهديرية**—مَوقع واسع وترحيبي مثالي للعروض التقنية، وبناء العلاقات، والمشروبات المنعشة. يجمع هذا الحدث الباحثين والمتخصصين وهواة **التعلم الآلي، الذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعة، ومعامل الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو مجرد مهتم بالذكاء الاصطناعي، فستجد شيئًا تستفيد منه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناغو، جزيرة الهديرية، أبوظبي * **التسجيل:** مجاني (مطلوب التأكيد على الحضور) (بحد أقصى 50 شخصًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل والتواصل * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة وتواصل غير رسمي **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق الفورية من Jane Street** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً من البداية إلى النهاية حول الحل الذي احتل المركز الثاني في مسابقة كاجل "Jane Street Real-Time Market Data Forecasting". تعكس مجموعة البيانات والإعداد بدقة واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خط أنابيب العمل بأكمله، مع تسليط الضوء على النتائج المهمة المستخلصة من تطوير النماذج ضمن هذه الظروف. **نبذة قصيرة** باتريك يام هو باحث كمي وحاصل على لقب بطل عالمي في مسابقات كاجل. يحمل درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) وهندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في التعلم الآلي للتنبؤات المالية، ولديه خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ الفوري. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: تحديات إدراك القيادة الذاتية** **المتحدث:** مراد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** دفع التعلم الآلي تقدمًا كبيرًا في مجال إدراك القيادة الذاتية، بدءًا من كشف الكائنات وتتبعها وصولاً إلى دمج المستشعرات والتنبؤ. ومع ذلك، فإن النماذج التي تحقق أداءً متميزًا في الاختبارات غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في مجال إدراك القيادة الذاتية. سنغطي خط أنابيب الإدراك (المستشعرات، الكشف، التتبع، الدمج)، ونسلط الضوء على التحديات مثل الانحراف عن المجال، المعايرة، الفجوة بين المحاكاة والواقع، وموازنة الدقة مع الأداء الفوري. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، بالإضافة إلى رؤى عملية حول سبب صعوبة تحقيق «الـ 10٪ الأخيرة» في حل المشكلة. **نبذة قصيرة** مراد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) في جامعة خليفة. يحمل بكالوريوس في هندسة الحاسوب (2021) وماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ في القيادة الذاتية، ولديه خبرة عملية في دمج بيانات الليدار والكاميرا، وكشف الأجسام ثلاثية الأبعاد، وتتبع الكائنات المتعددة، والتنبؤ بالمسارات. ### **المحاضرة 3: فينشين وراءه: نحو الاستدلال المالي الشفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تقوم بالاستدلال حول المشكلات المالية بطريقة شفافة وقابلة للتدقيق؟ في هذه المحاضرة، سأقدم فينشين، وهو معيار رمزي جديد يقيّم قدرات النماذج اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. ويغطي فينشين 54 موضوعًا متنوعًا — من حسابات الفوائد المركبة والضرائب إلى تحليل بيانات التدفق النقدي — ليشكل بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية الحساسة. ومن خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، يُلقي الضوء على كيفية "تفكير" النماذج — وأين تفشل. كما سأوضح الاتجاهات المستقبلية لتطوير نماذج مالية تركّز على الاستدلال وتتماشى بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الحقيقي. **نبذة قصيرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع البروفيسور بريسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي وفحص الحقائق. وقد تم نشر أعماله في أهم المؤتمرات في مجال المعالجة اللغوية الطبيعية مثل ACL وEMNLP وNAACL، ويتولى حاليًا مبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في المعالجة اللغوية الطبيعية من جامعة ملبورن في ديسمبر 2024، وكان موضوع أطروحته يتعلق بتوليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة.

المصدر:  meetup عرض المنشور الأصلي

موقع
C88X+XV Abu Dhabi - United Arab Emirates
عرض الخريطة

meetup

قد يعجبك أيضا

كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.