تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
[بالحضور الشخصي] لقاء أبوظبي للتعلم الآلي الموسم 6 الحلقة 163757368111235110
مجاني
المفضلة
مشاركة

[بالحضور الشخصي] لقاء أبوظبي للتعلم الآلي الموسم 6 الحلقة 1

addressC88X+XV Abu Dhabi - United Arab Emirates

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

**🚀 لقاء أبوظبي للتعلم الآلي – انطلاقة الموسم @ مقهى كولناغو** يسعدنا استئناف **لقاء أبوظبي للتعلم الآلي** مع موسم جديد من المحاضرات والتجمعات المجتمعية. هذه المرة، سنلتقي في **مقهى كولناغو في جزيرة الهضيريّات**، وهو مكان واسع ومرحب مثالي للعروض التقنية، وتمكين التواصل، وتقديم المشروبات. سيجمع هذا الحدث الباحثين والمتخصصين وهواة **التعلم الآلي، والذكاء الاصطناعي، وعلوم البيانات** من الأوساط الأكاديمية، والصناعة، ومعامل الأبحاث المدعومة من الحكومة. سواء كنت طالبًا أو مهندسًا أو باحثًا أو فقط مهتمًا بالذكاء الاصطناعي، فستجد شيئًا تتعلمه وشخصًا تتواصل معه. ## 📅 تفاصيل الحدث * **التاريخ:** الخميس، 25 سبتمبر 2025 * **الوقت:** 6:00 مساءً – 9:00 مساءً * **المكان:** مقهى كولناغو، جزيرة الهضيريّات، أبوظبي * **التسجيل:** مجانًا (مطلوب التأكيد) (بحد أقصى 50 مشاركًا) ## 📌 جدول الأعمال * **6:00 – 6:30 مساءً** → الوصول، التسجيل والتواصل * **6:30 – 8:00 مساءً** → عروض تقنية (3 متحدثين) * **8:00 – 9:00 مساءً** → أسئلة وأجوبة، مناقشة مفتوحة وتواصل غير رسمي **🎤 البرنامج** ### **المحاضرة 1: الحل الذي حصل على المركز الثاني في مسابقة كاجل: التنبؤ ببيانات السوق في الوقت الفعلي من Jane Street** **المتحدث:** باتريك يام (باحث كمي) **الملخص** تقدم هذه المحاضرة نهجًا شاملاً يشرح الحل الذي حصل على المركز الثاني في مسابقة كاجل Jane Street للتنبؤ ببيانات السوق في الوقت الفعلي. تعكس مجموعة البيانات والإعداد بشكل وثيق واقع بناء النماذج للأسواق المالية الحديثة. سأشارك خطوط العمل الكاملة، مع تسليط الضوء على النتائج المثيرة للاهتمام المستمدة من تطوير النماذج في هذه الظروف. **نبذة مختصرة** باتريك يام هو باحث كمي وحاصل على لقب بطل عالمي في مسابقات كاجل. يمتلك درجتي الماجستير في علوم البيانات والتحليل (جامعة كارديف، المملكة المتحدة) والهندسة النقل (جامعة هونغ كونغ). يتخصص باتريك في التعلم الآلي للتنبؤات المالية، مع خبرة في نمذجة السلاسل الزمنية، والتعلم العميق، وأنظمة التنبؤ في الوقت الفعلي. وقد حصل على العديد من الميداليات الذهبية والفضية في مسابقات كاجل. ### **المحاضرة 2: من المختبر إلى الطريق: التحديات في إدراك القيادة الذاتية** **المتحدث:** مُرَاد سمرتياب (مهندس بحث، مختبر المركبات الذاتية – جامعة خليفة) **الملخص** حقق التعلم الآلي تقدمًا كبيرًا في إدراك القيادة الذاتية، بدءًا من اكتشاف الكائنات وتتبعها، وصولاً إلى دمج الحساسات والتنبؤ. ومع ذلك، فإن النماذج التي تؤدي بشكل ممتاز في الاختبارات غالبًا ما تفشل في الظروف الواقعية. تستعرض هذه المحاضرة الفجوة بين البحث والمنتج في إدراك القيادة الذاتية. سنتناول خط سير الإدراك (الحساسات، الكشف، التتبع، الدمج)، ونسلط الضوء على التحديات مثل تحوّل المجال، المعايرة، فجوة المحاكاة مقابل الواقع، والتوازن بين الدقة والأداء في الوقت الفعلي. تم تصميم الجلسة لتزويد الحضور بفهم عام لإدراك القيادة الذاتية، بالإضافة إلى رؤى عملية حول سبب كون "الـ 10٪ الأخيرة" من المشكلة غالبًا هي الأصعب. **نبذة مختصرة** مُرَاد سمرتياب هو مهندس بحث في مختبر المركبات الذاتية (AVLab) بجامعة خليفة. يحمل درجة البكالوريوس في هندسة الحاسوب (2021) والماجستير في علوم الحاسوب (2023)، وكلاهما من جامعة خليفة. يتركز بحثه على الإدراك والتنبؤ للقيادة الذاتية، مع خبرة عملية في دمج بيانات الليدار مع الكاميرا، والكشف ثلاثي الأبعاد، وتتبع الكائنات المتعددة، وتوقع المسارات. ### **المحاضرة 3: فينشين و ما بعدها: نحو استدلال مالي شفاف في الذكاء الاصطناعي** **المتحدث:** زهوهان شي، باحث في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI) **الملخص** كيف يمكننا بناء أنظمة ذكاء اصطناعي تستطيع استنتاج الحلول للمشاكل المالية بطريقة شفافة وقابلة للتدقيق؟ في هذه المحاضرة، سأقدم فينشين، وهي معيار رمزي جديد يقيّم قدرات النمذجة اللغوية الكبيرة على الاستدلال خطوة بخطوة في السيناريوهات المالية. وتشمل فينشين 54 موضوعًا متنوعًا — من حسابات الفائدة المركبة والضرائب إلى تحليل بيانات التدفق النقدي — ما يجعلها بيئة اختبار شاملة للاستدلال الرمزي في السياقات المالية ذات المخاطر العالية. ومن خلال تفكيك المهام المعقدة إلى سلاسل استدلال منظمة، تُظهر هذه الأداة كيف تفكر النماذج — وأين تفشل. كما سأعرض الاتجاهات المستقبلية لتطوير نماذج مالية تركز على الاستدلال وتوائم بشكل أفضل مع توقعات البشر واحتياجات اتخاذ القرار في العالم الواقعي. **نبذة مختصرة** زهوهان شي هو باحث ما بعد الدكتوراه في جامعة محمد بن زايد للذكاء الاصطناعي (MBZUAI)، يعمل مع الأستاذ برسلاف ناكوف. يتركز بحثه على الاستدلال في النماذج اللغوية الكبيرة، مع تطبيقات في الذكاء الاصطناعي المالي والتحقق من الحقائق. وقد نُشرت أعماله في أبرز المؤتمرات في معالجة اللغة الطبيعية مثل ACL وEMNLP وNAACL، وهو حاليًا يقود مبادرات جديدة في مجال الاستدلال المالي والذكاء الاصطناعي متعدد اللغات. حصل زهوهان على درجة الدكتوراه في معالجة اللغة الطبيعية من جامعة ملبورن في ديسمبر 2024، وركّز أطروحته على توليد القصص وتقييمها باستخدام النماذج اللغوية الكبيرة. ## ℹ️ ما الذي يمكن توقعه * **المحاضرات:** عروض تقنية ولكنها سهلة الفهم حول أحدث المواضيع في التعلم الآلي والذكاء الاصطناعي * **المجتمع:** فرصة للقاء الأقران من الأوساط الأكاديمية، والصناعة، ووحدات البحث والتطوير الحكومية * **المشروبات:** تُقدَّم من قبل مقهى كولناغو (شكرًا لرعاةنا) * **أحضر معك:** الفضول، الأسئلة، وبطاقات العمل (إذا رغبت في التواصل) ## 🎯 من يجب أن يشارك؟ * الباحثون والمهندسين في مجال التعلم الآلي والذكاء الاصطناعي * علماء البيانات ومطوري البرمجيات * الطلاب والمهنيين المبتدئين المهتمين بالذكاء الاصطناعي التطبيقي * المهنيون في الصناعة الذين يستكشفون تطبيقات التعلم الآلي

المصدر:  meetup عرض المنشور الأصلي

موقع
C88X+XV Abu Dhabi - United Arab Emirates
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.