تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
الخوارزميات الكمية: المفاهيم والقدرات63791084727938110
مجاني
المفضلة
مشاركة

الخوارزميات الكمية: المفاهيم والقدرات

addressF5HW+FGX, Vaiaku, Tuvalu

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

تستفيد الخوارزميات الكمية من المبادئ الأساسية للميكانيكا الكمية—مثل التراكب، والتشابك، والتداخل—لإجراء الحسابات بطرق لا يمكن للخوارزميات التقليدية تحقيقها. يسمح التراكب للبتات الكمية (اليوبيتات) بتمثيل حالات متعددة في آنٍ واحد، مما يمكّن من استكشاف مسارات حسابية بشكل متوازٍ. أما التشابك فيُدخِل ارتباطات بين اليوبيتات تتجاوز الحدود الكلاسيكية، ما يتيح توزيع ومعالجة المعلومات بطريقة غير محلية. ثم يستخدم التداخل الكمي لتعزيز السعة الاحتمالية للنتائج الصحيحة مع إلغاء النتائج الخاطئة. على عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكوسة (وحدوية)، وبسبب نظرية عدم الاستنساخ، لا يمكنها نسخ حالات كمية عشوائية. وبالتالي تتطلب تصاميم الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع البيانات المؤقتة أو تنظيم تدفقات الحساب. إن نتائج الخوارزميات الكمية احتمالية بطبيعتها، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب تشغيلات متعددة للحصول على إجابات عالية الثقة. تعتمد العديد من الخوارزميات الكمية على العوامل—دوال صندوق أسود خاصة—لتوجيه عمليات البحث أو اتخاذ القرارات، كما في خوارزمية غروفير. يمكن لهذه الخوارزميات توفير تسريعات دراماتيكية: فخوارزمية غروفير توفر مكاسب تربيعية في مهام البحث، في حين تقدم خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وفقدان التماسك، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا جوهريًا في الحوسبة، حيث تستفيد من موارد كمية فريدة لمعالجة المشكلات التي يصعب حلها بالآلات الكلاسيكية.

المصدر:  meetup عرض المنشور الأصلي

موقع
F5HW+FGX, Vaiaku, Tuvalu
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.