تستفيد الخوارزميات الكمية من المبادئ الأساسية للميكانيكا الكمومية—مثل التراكب، والتشابك، والتداخل—لإجراء الحسابات بطرق لا يمكن للخوارزميات التقليدية تحقيقها. يسمح التراكب للكيوبتات (وحدات البت الكمي) بتمثيل حالات متعددة في آنٍ واحد، مما يمكّن من استكشاف المسارات الحسابية بشكل متوازٍ. ويؤدي التشابك إلى ظهور ارتباطات بين الكيوبتات تتجاوز الحدود الكلاسيكية، ما يسمح بتوزيع ومعالجة المعلومات بطريقة غير محلية. ثم يستخدم التداخل الكمي لتكبير سعات الاحتمالات للنتائج الصحيحة مع إلغاء تلك الخاصة بالنتائج الخاطئة. وعلى عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكوسة (وحيدية)، وبسبب نظرية عدم النسخ، لا يمكنها نسخ حالات كمومية عشوائية. ونتيجة لذلك، تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع البيانات المؤقتة أو تنظيم تدفقات الحساب. إن نتائج الخوارزميات الكمية احتمالية بطبيعتها، وتظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب تشغيلات متعددة للحصول على إجابات ذات ثقة عالية. تعتمد العديد من الخوارزميات الكمية على الدوال الصندوقية السوداء (الأوراكل)—التي توجّه عمليات البحث أو اتخاذ القرار—كما في خوارزمية غروفر. ويمكن لهذه الخوارزميات توفير تسريعات كبيرة: فعلى سبيل المثال، توفر خوارزمية غروفر مكاسب تربيعية في مهام البحث، بينما تقدم خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وفقدان التماسك، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا نوعيًا في مجال الحوسبة، حيث تستفيد من موارد كمومية فريدة لمعالجة مشكلات لا يمكن حلها بالآلات الكلاسيكية.