تستفيد الخوارزميات الكمية من المبادئ الأساسية للديناميكا الكمية—مثل التراكب، والتشابك، والتداخل—لإجراء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح التراكب للبتات الكمية (كيوبتات) بالتمثيل المتزامن لحالات متعددة، مما يمكّن من استكشاف المسارات الحسابية بشكل متوازٍ. أما التشابك فيُدخِل ارتباطات بين البتات الكمية تتجاوز الحدود الكلاسيكية، ما يتيح توزيع المعلومات ومعالجتها بطريقة غير محلية. ثم يستخدم التداخل الكمي لتعزيز سعات الاحتمالات للنتائج الصحيحة مع إلغاء تلك الخاصة بالنتائج الخاطئة. على عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات قابلة للعكس (وحدوية)، وبسبب نظرية عدم النسخ لا يمكنها نسخ حالات كمية عشوائية. وبالتالي تتطلب تصاميم الخوارزميات نهجاً مختلفاً جوهرياً، خاصة عند التعامل مع بيانات مؤقتة أو تنظيم تدفقات الحوسبة. تتسم نتائج الخوارزميات الكمية بطبيعتها الاحتمالية الجوهرية، حيث تظهر النتائج النهائية فقط عند القياس، وغالباً ما تتطلب العديد من المرات لتحقيق إجابات عالية الثقة. تعتمد العديد من الخوارزميات الكمية على أوراكل—دوال صندوق أسود خاصة—لتوجيه عمليات البحث أو اتخاذ القرارات، كما في خوارزمية غروفير. يمكن لهذه الخوارزميات توفير تسريعات دراماتيكية: فخوارزمية غروفير توفر مكاسب تربيعية في مهام البحث، بينما تمنح خوارزمية شور تسريعاً أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء ولتفكك التماسك الكمي، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمراً ضرورياً. باختصار، تمثل الخوارزميات الكمية تحولاً نموذجياً في الحوسبة، حيث تستغل موارد كمية فريدة لمعالجة المشكلات التي يصعب حلها بالآلات الكلاسيكية.