تستفيد الخوارزميات الكمية من المبادئ الأساسية للديناميكا الكمية—مثل التراكب، والتشابك، والتداخل—لأداء الحسابات بطرق لا يمكن للخوارزميات التقليدية تحقيقها. يسمح التراكب للبتات الكمية (كيوبتات) بتمثيل حالات متعددة في آنٍ واحد، مما يمكّن من استكشاف مسارات حسابية بشكل متوازٍ. ويؤدي التشابك إلى ظهور ارتباطات بين البتات الكمية تتجاوز الحدود التقليدية، ما يتيح توزيع المعلومات ومعالجتها بطريقة غير محلية. ثم يستخدم التداخل الكمي لتعزيز السعات الاحتمالية للنتائج الصحيحة مع إلغاء النتائج الخاطئة. على عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكوسة (وحدوية)، وبسبب نظرية عدم الاستنساخ، لا يمكنها نسخ حالات كمية عشوائية. وبالتالي تتطلب تصاميم الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع بيانات مؤقتة أو تنظيم تدفقات الحساب. إن نتائج الخوارزميات الكمية احتمالية بطبيعتها، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب عدة تشغيلات للحصول على إجابات عالية الثقة. تعتمد العديد من الخوارزميات الكمية على الأوراكل—دوال صندوق أسود خاصة—لتوجيه عمليات البحث أو اتخاذ القرار، كما في خوارزمية جروفر. يمكن لهذه الخوارزميات توفير تسريعات دراماتيكية: فخوارزمية جروفر توفر مكاسب تربيعية في مهام البحث، بينما توفر خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وفقدان التماسك، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا جوهريًا في الحوسبة، حيث تستفيد من موارد كمية فريدة لمعالجة المشكلات التي يصعب حلها بالأجهزة التقليدية.