تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
الخوارزميات الكمية: المفاهيم والقدرات63737352426115110
مجاني
المفضلة
مشاركة

الخوارزميات الكمية: المفاهيم والقدرات

addressF5HW+FGX, Vaiaku, Tuvalu

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

تستفيد الخوارزميات الكمية من المبادئ الأساسية للديناميكا الكمية—مثل التراكب، والتشابك، والتداخل—لأداء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح التراكب للبتات الكمية (الكيوبتات) بتمثيل حالات متعددة في آنٍ واحد، مما يمكّن من استكشاف مسارات حسابية بشكل متوازٍ. ويؤدي التشابك إلى ظهور ارتباطات بين الكيوبتات تتجاوز الحدود الكلاسيكية، ما يسمح بتوزيع المعلومات ومعالجتها بطريقة غير محلية. ثم يستخدم التداخل الكمي لتعزيز السعة الاحتمالية للنتائج الصحيحة، بينما يتم إلغاء النتائج الخاطئة. وعلى عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكسية (وحداتية)، وبسبب نظرية عدم الاستنساخ، لا يمكنها نسخ حالات كمية عشوائية. وبالتالي، تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع بيانات مؤقتة أو تنظيم تدفقات الحساب. تتسم نتائج الخوارزميات الكمية بطابع احتمالي بطبيعتها، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب تشغيلات متعددة للحصول على إجابات ذات ثقة عالية. تعتمد العديد من الخوارزميات الكمية على أوراكل—دوال صندوق أسود خاصة—لتوجيه عمليات البحث أو اتخاذ القرار، كما في خوارزمية جروفر. ويمكن لهذه الخوارزميات تحقيق تسريعات دراماتيكية: فخوارزمية جروفر توفر مكاسب تربيعية في مهام البحث، في حين توفر خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء وفقدان التماسك، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرين ضروريين. باختصار، تمثل الخوارزميات الكمية تحولًا نوعيًا في الحوسبة، حيث تستفيد من موارد كمية فريدة لمعالجة مشكلات لا يمكن حلها باستخدام الأجهزة الكلاسيكية.

المصدر:  meetup عرض المنشور الأصلي

موقع
F5HW+FGX, Vaiaku, Tuvalu
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.