تستفيد الخوارزميات الكمية من المبادئ الأساسية للديناميكا الكمية—مثل التراكب، والتشابك، والتداخل—لإجراء الحسابات بطرق لا يمكن للخوارزميات الكلاسيكية تحقيقها. يسمح التراكب للبتات الكمية (كيوبيتات) بتمثيل حالات متعددة في آنٍ واحد، مما يمكّن من استكشاف مسارات الحوسبة بشكل متوازٍ. أما التشابك فيُدخِل ارتباطات بين الكيوبيتات تتجاوز الحدود الكلاسيكية، ما يسمح بتوزيع المعلومات ومعالجتها بشكل غير محلي. ثم يستخدم التداخل الكمي لتعزيز السعة الاحتمالية للنتائج الصحيحة مع إلغاء النتائج الخاطئة. على عكس الخوارزميات الكلاسيكية، يجب أن تعمل الخوارزميات الكمية باستخدام بوابات عكسية (وحدوية)، ونظرًا لنظرية عدم النسخ، لا يمكنها نسخ حالات كمية عشوائية. وبالتالي، تتطلب تصميمات الخوارزميات نهجًا مختلفًا جوهريًا، خاصة عند التعامل مع البيانات المؤقتة أو تنظيم تدفقات الحوسبة. تتسم نتائج الخوارزميات الكمية بطابع احتمالي بطبيعتها، حيث تظهر النتائج النهائية فقط عند القياس، وغالبًا ما تتطلب تشغيلات متعددة للحصول على إجابات عالية الثقة. تعتمد العديد من الخوارزميات الكمية على أوراكل—دوال صندوق أسود خاصة—لتوجيه عمليات البحث أو اتخاذ القرارات، كما في خوارزمية جروفر. يمكن لهذه الخوارزميات توفير تسريعات دراماتيكية: فخوارزمية جروفر تقدم مكاسب تربيعية في مهام البحث، في حين توفر خوارزمية شور تسريعًا أسيًا في تحليل الأعداد الكبيرة. وعلى الرغم من إمكاناتها، فإن الأنظمة الكمية حساسة للضوضاء والتدهور، مما يجعل التصحيح الخطي وتصميم الدوائر المتسامحة مع الأخطاء أمرًا ضروريًا. باختصار، تمثل الخوارزميات الكمية تحولًا نموذجيًا في الحوسبة، حيث تستفيد من موارد كمية فريدة لمعالجة المشكلات التي يصعب حلها باستخدام الأجهزة الكلاسيكية.