انضم إلينا في اليوم الأول من سلسلة فعاليات افتراضية للاستماع إلى متحدثين خبراء حول آخر التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل الدخول عبر Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وتصنيف سحب نقاط الليدار من العالم الحقيقي بحجم كبير أمر مكلف وجهد استهلاكي، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع يُنتج بيانات واقعية ومصنفة بالكامل مع أقل حد من الجهد البشري في التصنيف. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح خلفي منفصل (مثل الحقول، الطرق، مواقع البناء) ومسح كائنات منفصل (مثل المركبات، الأشخاص، الآلات). ومن خلال دمج هذين المصدرَين بشكل ذكي، يمكن لـ Paved2Paradise تركيب مجموعة كبيرة من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار خلفي واسع النطاق، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف مضبوطة، (3) إدخال الكائنات ضمن الخلفيات مع وضع وحجب يتماشيان مع القوانين الفيزيائية، و(4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها باستخدام Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتسمية اليدوية مقارنةً بجمع البيانات التقليدي. هذه الطريقة ليست فقط فعالة من حيث التكلفة، بل مرنة أيضًا—تمكّن الممارسين من التوسع بسهولة إلى فئات أو نطاقات كائنات جديدة من خلال استبدال مسح الخلفية أو الكائنات بآخر جديد. بالنسبة لممارسي تعلم الآلة العاملين في مجالات الروبوتات، المركبات ذاتية القيادة، أو نظم الإدراك الحرجة للسلامة، يبرز Paved2Paradise طريقًا عمليًا نحو توسيع بيانات التدريب دون زيادة التكاليف. كما أنه يغلق الفجوة بين الأداء في المحاكاة والأداء في العالم الحقيقي، مما يتيح التكرار الأسرع والنشر الأكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألْكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي للتعلم الآلي في شركة John Deere\، حيث يطوّر نماذج تعلّم عميق للإدراك باستخدام بيانات الليدار وRGB في أنظمة حرجة للسلامة وتتطلب زمنًا حقيقيًا\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة الزمكانية\، ويحمل أيضًا تخصصًا فرعيًا في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، وكانت ورقته \(batter\|pitcher\)2vec فائزة بجائزة في مؤتمر MIT Sloan Sports Analytics Conference عام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وقد استخدمت مستودعاته على GitHub—التي حصلت مجتمعة على أكثر من 2\,100 نجمة—كمصدر أولي لأغراض بحثية وإنتاجية في العديد من المؤسسات المختلفة\. **MothBox: جهاز رصد حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كوتميير عن تصميم أداة علمية مفتوحة المصدر جديدة ومثيرة، Mothbox. يُعد مشروع Mothbox مشروعًا فائزًا بجائزة لمراقبة واسعة النطاق للحشرات بهدف دراسة التنوع البيولوجي. وهو جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويقوم بتصوير صور فائقة الدقة ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات عمليات النشر في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للإنتاج لتعميم هذه الأداة المهمة عالميًا. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي على مستوى العالم. *عن المتحدث* يصمم الدكتور آندي كوتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل Cartoon Network وIDEO وSmithsonian، ودرّس كأستاذ محاضر في الجامعة الوطنية السنغافورية، وتحولت أبحاثه حتى إلى سلسلة تلفزيونية (مضحكة) بعنوان "Hacking the Wild"، تم توزيعها بواسطة Discovery Networks. حالياً، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس مختبر للصناعات الحرفية في موقع ميداني باسم Digital Naturalism Laboratories. في غابة الأمطار في جامبوا ببنما، يدمج Dinalab العمل الميداني البيولوجي مع الصناعة التكنولوجية ضمن مجتمع من العلماء والفنانين والمهندسين ومحسنّي الحيوانات المحليين والدوليين. وحاليًا، يعمل أيضًا كأستاذ مشارك مستشار للطلاب في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أحدث الأبحاث المتعلقة بتمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب (zero-shot) أو من خلال التعديل الدقيق (fine-tuning). على وجه التحديد، سأتناول العمل المشترك حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد مكان الاستعلام البصري في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب خاص بالمهمة ومعالجة مقاطع الفيديو الطويلة بكفاءة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج رؤية تم تدريبها مسبقًا. كما سأناقش العمل المشترك حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على المطالبات التي تتطلب فهمًا شاملاً مكانياً وزمنياً: فنماذج MLLMs تجد صعوبة في الإجابة على المطالبات التي تشير إلى 1) البيئة بأكملها التي يمكن لوكيل مزود بـ MLLM العمل فيها؛ وفي الوقت نفسه تشير أيضًا إلى 2) الإجراءات الأخيرة التي حدثت للتو والتي تم ترميزها في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني والزماني مهم للوكلاء الذين يعملون في العالم الحقيقي. يتمثل حلنا في تطوير خط أنابيب مخصص لجمع البيانات وتعديل نموذج MLLM مزوّد بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شمباين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. تلقى تعليمه الجامعي والحصول على دبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. وبعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تشمل اهتماماته البحثية مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق العلمية حول موضوعات فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، وتجهيز الصور واللغة، والنماذج التوليدية. وقد تم منح أطروحته للدكتوراه ميدالية ETH، وفاز بحث فريقه بجائزة NSF CAREER. **ما وراء المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** إن كشف الشذوذ يحوّل الصناعة والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي أن يكشف حقًا عن أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ ويحلل مشكلات المحاصيل باستخدام صحة أوراق القهوة كمثال أساسي. سنبدأ من النظرية الأساسية، ثم نفحص كيف تكتشف هذه النماذج صدأ الورقة وأضرار المنّ في صور الأوراق. تشمل الجلسة سير عمل شاملاً عمليًا باستخدام أداة FiftyOne المفتوحة المصدر للرؤية الحاسوبية، تغطي إدارة مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وعلى خبرة عملية تطبيقية لهذه التقنيات على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) حاصلة على درجة الدكتوراه في الرؤية الحاسوبية وتعلّم الآلة، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. تعمل على تطوير تقنيات هندسية متكاملة جديدة، أساسًا في مجالات الرؤية الحاسوبية، والروبوتات، وتعلّم الآلة المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.