تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)63783969024515110
مجاني
المفضلة
مشاركة

15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)

addressF5HW+FGX, Vaiaku, Tuvalu

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى متحدثين خبراء حول أحدث التطورات في مجال التقاء الذكاء الاصطناعي البصري بالزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **الموقع** افتراضي. [سجّل الدخول إلى Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية بيانات ضخمة ومتنوعة ثلاثية الأبعاد. ولكن جمع وترميز سحب ليدار ثلاثية الأبعاد من العالم الحقيقي بحجم كبير أمرٌ مكلفٌ وطويل، خاصة عندما تكون التسميات عالية الجودة ضرورية. يقدم Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع يُنتج بيانات واقعية ومكتملة الترميز مع أقل جهد بشري في التسمية. الفكرة الأساسية هي "تحليل الواقع" من خلال التقاط مسح الخلفيات (مثل الحقول، الطرق، مواقع البناء) ومسح الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise تركيب عدد هائل من مشاهد التدريب المتنوعة. يتضمن الخط الأنابيب أربع خطوات: (1) جمع مسح ليدار واسع النطاق للخلفيات، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف مضبوطة، (3) إدخال الكائنات في الخلفيات مع وضع وحجب يتماشى مع القوانين الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتسمية اليدوية مقارنةً بجمع البيانات التقليدي. هذه الطريقة ليست فقط فعالة من حيث التكلفة، بل أيضًا مرنة – مما يسمح للممارسين بسهولة التوسع إلى فئات أو نطاقات كائنات جديدة عن طريق استبدال مسحات الخلفية أو الكائنات. بالنسبة لممارسي تعلم الآلات العاملين في مجالات الروبوتات، المركبات ذاتية القيادة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون زيادة التكاليف. وهو يسد الفجوة بين المحاكاة والأداء في العالم الحقيقي، ويتيح التكرار السريع والنماذج أكثر موثوقية عند التشغيل. *عن المتحدث* [مايكل أ. ألْكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي في تعلم الآلات في شركة John Deere\، حيث يطوّر نماذج تعلّم عميق للإدراك باستخدام الليدار والصور RGB لأنظمة تتطلب السلامة وتكون في الوقت الفعلي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية\، كما يحمل تخصصًا فرعيًا في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، كما فاز ورقته \(batter\|pitcher\)2vec بجائزة في مؤتمر MIT Sloan Sports Analytics Conference عام 2018\. كما ساهم برمجيات تعلم الآلات في scikit\-learn وApache Solr\، وقد استُخدمت مستودرات GitHub الخاصة به—التي حصلت مجتمعة على أكثر من 2\,100 نجمة—كمحطات انطلاق لأبحاث ورموز إنتاجية في العديد من المؤسسات المختلفة\. **MothBox: جهاز رصد حشرات منخفض التكلفة، مفتوح المصدر، وآلي** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية مثيرة جديدة ومفتوحة المصدر، Mothbox. إن Mothbox مشروع فائز بجائزة لمراقبة الحشرات على نطاق واسع لأغراض التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في الغابات الاستوائية الصعبة في بنما، ويقوم بتصوير صور فائقة الدقة ثم يقوم بتحديد تلقائي لمستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات الحشرية ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للتصنيع لنشارك هذه الأداة المهمة عالميًا. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل Cartoon Network و IDEO و Smithsonian، ودرّس كأستاذ أكاديمي في جامعة سنغافورة الوطنية، وحتى تحولت أبحاثه إلى برنامج تلفزيوني (مضحك) باسم "Hacking the Wild"، تم توزيعه عبر Discovery Networks. حالياً، يقضي معظم وقته في التطوع مع منظمات صغيرة، وقام مؤخرًا بتأسيس مختبر الحرف الرقمية (Digital Naturalism Laboratories)، وهو مساحة مخصصة للصناعات الحرفية في محطات الميدان. في غابة الأمطار في جامبوا ببنما، يدمج Dinalab العمل الميداني البيولوجي مع الحرف التكنولوجية ضمن مجتمع من العلماء والفنانين والمهندسين ومتعافي الحيوانات المحليين والدوليين. ويشغل حاليًا منصب أستاذ متعاون في جامعة واشنطن حيث يستشار الطلاب. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب أو عبر التعديل الدقيق (fine-tuning). على وجه التحديد، سأناقش عملًا مشتركًا حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة وهي تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب مخصص لكل مهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل مبني على المناطق مستمد من نماذج رؤية تم تدريبها مسبقًا. كما سأناقش عملًا مشتركًا حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على المحفزات التي تتطلب فهمًا شموليًا مكانياً-زمنياً: فالنماذج MLLMs تواجه صعوبة في الإجابة على محفزات تشير إلى 1) البيئة بأكملها التي يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وفي نفس الوقت تشير أيضًا إلى 2) الإجراءات الأخيرة التي حدثت للتو والتي تم ترميزها في مقطع فيديو. لكن مثل هذا الفهم الشمولي المكاني-الزماني مهم للوكلاء الذين يعملون في العالم الحقيقي. وحلنا يتضمن تطوير خط أنابيب مخصص لجمع البيانات وتعديل دقيق لنموذج MLLM مزود بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شامبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على بكالوريوس ودبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية بميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. وبعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تتمحور اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية في مواضيع فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. وقد كُرّمت أطروحته للدكتوراه بوسام ETH، وفاز بحث فريقه بجائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تغييرات جذرية في التصنيع والمراقبة، لكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ ويحصر مشاكل المحاصيل باستخدام صحة أوراق القهوة كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم نفحص كيف تكتشف هذه النماذج صدأ الأوراق وأضرار المنقوشات في الصور. تشمل الجلسة سير عمل شاملاً وعمليًا باستخدام مجموعة أدوات الرؤية الحاسوبية مفتوحة المصدر FiftyOne، تغطي تنقيح البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، بالإضافة إلى خبرة عملية في تطبيق هذه الأساليب على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [باولا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية وتعلم الآلات، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. تعمل على تطوير تقنيات هندسية متكاملة جديدة، خاصة في مجالات الرؤية الحاسوبية، والروبوتات، وتعلم الآلات المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.

المصدر:  meetup عرض المنشور الأصلي

موقع
F5HW+FGX, Vaiaku, Tuvalu
عرض الخريطة

meetup
كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.