انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى متحدثين خبراء حول أحدث التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا (المنطقة الزمنية للساحل الهادئ) **الموقع** افتراضي. [سجّل الدخول إلى Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع من أجل الإدراك في العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج إدراك قوية للروبوتات والأنظمة المستقلة مجموعات بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وتصنيف سحب نقاط ليدار من العالم الحقيقي بحجم كبير أمر مكلف وطويل جدًا، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم مشروع Paved2Paradise بديلًا اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع لإنشاء مجموعات بيانات واقعية ومكتملة التسمية بجهد تسمية بشري ضئيل. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح خلفي (مثل الحقول، الطرق، مواقع البناء) ومسح كائنات منفصلة (مثل المركبات، الأشخاص، الآلات). من خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد عدد كبير جدًا من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار خلفي واسع النطاق، (2) تسجيل مسح عالي الدقة للكائنات المستهدفة في ظروف خاضعة للرقابة، (3) إدخال الكائنات في الخلفيات مع وضع وحجب متسقين من الناحية الفيزيائية، (4) محاكاة هندسة ليدار لضمان الواقعية. تُظهر التجارب أن النماذج المدربة على بيانات تم إنشاؤها باستخدام Paved2Paradise تنتقل بفعالية إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع تقليل كبير في الجهد اليدوي للتصنيف مقارنةً بجمع مجموعات البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل مرنة أيضًا—تمكّن الممارسين من التوسع بسهولة إلى فئات أو مجالات كائنات جديدة عن طريق استبدال مسح الخلفية أو الكائنات بمسوحات جديدة. بالنسبة لممارسي تعلم الآلات العاملين في مجالات الروبوتات، المركبات المستقلة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون زيادة التكاليف. وهو يُغلق الفجوة بين الأداء في المحاكاة والأداء في العالم الحقيقي، مما يتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس متقدم في تعلم الآلات في شركة جون دير، حيث يُطور نماذج تعلم عميق للإدراك باستخدام بيانات ليدار وRGB في أنظمة تتطلب السلامة وتُعالج في الزمن الحقيقي. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن، مع أطروحة حول تحسين رؤية الحاسوب والشبكات العصبية العميقة الزمكانية، ويحمل أيضًا تخصصًا فرعيًا للدراسات العليا في الرياضيات. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind، Google، Meta، Microsoft، وOpenAI، من بين آخرين، كما فاز بجائزة في مؤتمر MIT Sloan للتحليلات الرياضية 2018 عن ورقة \(batter\|pitcher\)2vec. كما ساهم برمجيات تعلم الآلات في scikit\-learn وApache Solr، وقد تلقت مستودرات GitHub الخاصة به—التي حصلت مجتمعة على أكثر من 2\,100 نجمة—استخدامات كنقطة بداية لأبحاث ورموز إنتاجية في العديد من المؤسسات المختلفة. **MothBox: جهاز رصد حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية مفتوحة المصدر مثيرة، تُسمى Mothbox. إن Mothbox هو مشروع فائز بجائزة لمراقبة الحشرات على نطاق واسع من أجل التنوع البيولوجي. وهو جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويُجري صورًا عالية الدقة جدًا لتحديد مستويات التنوع البيولوجي تلقائيًا في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نُطور إصدارًا جديدًا قابلاً للتصنيع لنشر هذه الأداة المهمة في جميع أنحاء العالم. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يُصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع مؤسسات كبيرة مثل شبكة كرتون نتورك، وIDEO، ومعهد سميثسونيان، ودرّس كبروفيسور ذو وظيفة أكاديمية دائمة في الجامعة الوطنية السنغافورية، بل وتم تحويل بحثه إلى سلسلة تلفزيونية (مجنونة) بعنوان "اختراق البرية"، تم توزيعها عبر شبكات ديسكفري. حاليًا، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس ورشة عمل مختبرات الطبيعة الرقمية (Digital Naturalism Laboratories). في غابة مطيرة في جامبوا ببنما، تجمع Dinalab بين العمل الميداني البيولوجي والحرف التكنولوجية ضمن مجتمع من العلماء والفنانين والمهندسين ومتخصصي إعادة تأهيل الحيوانات المحليين والدوليين. وهو حاليًا مستشار للطلاب كبروفيسور متعاون في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من أسلوب جديد لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب ومن خلال التعديل الدقيق (fine-tuning). على وجه التحديد، سأناقش بحثًا مشتركًا حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب خاص بالمهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج بصرية مُدرّبة مسبقًا. سأناقش أيضًا بحثًا مشتركًا حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة بشكل صحيح على الاستعلامات التي تتطلب فهمًا شاملاً من حيث المكان والزمن: حيث تواجه النماذج متعددة الوسائط صعوبة في الإجابة على استعلامات تشير إلى 1) بيئة كاملة يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وتشير في الوقت نفسه إلى 2) أفعال حديثة حدثت للتو وتم ترميزها في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل من حيث المكان والزمن مهم للوكلاء العاملين في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات والتعديل الدقيق لنموذج MLLM مجهز بمشعات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شامبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب. حصل على بكالوريوس ودبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونخ عامي 2006 و2008 على التوالي، ونال درجة الدكتوراه في علوم الحاسوب من معهد إيث زيورخ عام 2014. بعد ذلك، انضم إلى جامعة تورونتو كزميل باحث حتى عام 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب، حيث شارك في تأليف العديد من الأوراق البحثية في موضوعات تشمل فهم السيناريوهات، وخوارزميات الاستدلال والتعلم، والتعلم العميق، وتحليل الصور واللغة، والنماذج التوليدية. حصلت أطروحته للدكتوراه على ميدالية ETH، ونالت أبحاث فريقه جائزة NSF CAREER. **ما وراء المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تغييرًا جذريًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ يُظهر هذا الحديث كيف يُمكن لكشف الشذوذ تحديد مشكلات المحاصيل وموقعها باستخدام صحة أوراق القهوة كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم ندرس كيف تكتشف هذه النماذج الصدأ وأضرار المنقّاب في صور الأوراق. تشمل الجلسة سير عمل شاملاً عمليًا باستخدام مجموعة أدوات الرؤية الحاسوبية المفتوحة المصدر FiftyOne، وتغطي إدارة مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وتصور النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وخبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية وقطاعات أخرى. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية وتعلم الآلات، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وهي تُطور تقنيات هندسية متكاملة جديدة، تركز بشكل رئيسي على الرؤية الحاسوبية، والروبوتات، وتعلم الآلات المُطبّق على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.