انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول أحدث التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الباسيفيكي **المكان** افتراضي. [سجّل الدخول عبر زوم.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع من أجل الإدراك في العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية مجموعات بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وتصنيف سحب بيانات ليدار من العالم الحقيقي على نطاق واسع أمر مكلف وطويل جدًا، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم Paved2Paradise بديلًا اقتصاديًا: خط أنابيب محاكاة ليدار قابل للتوسيع لإنشاء مجموعات بيانات واقعية ومكتملة التسمية بجهد تصنيف بشري ضئيل. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح خلفيات (مثل الحقول، الطرق، مواقع البناء) ومسح كائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال الجمع الذكي بين هذين المصدرَين، يمكن لـ Paved2Paradise تركيب عدد كبير من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار خلفي واسع النطاق، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف مضبوطة، (3) إدخال الكائنات في الخلفيات مع وضع متناسق فيزيائيًا وحدوث احتجاب، (4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع جهد تصنيف يدوي أقل بكثير مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل أيضًا مرنة—تمكّن الممارسين من التوسع بسهولة إلى فئات كائنات جديدة أو مجالات جديدة عن طريق استبدال مسحات الخلفية أو الكائنات. بالنسبة لممارسي التعلم الآلي العاملين في مجالات الروبوتات، المركبات الذاتية القيادة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون توسيع التكاليف. وهو يسد الفجوة بين الأداء في المحاكاة والأداء في العالم الحقيقي، ما يمكّن من التكرار الأسرع والنشر الأكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس تعلم آلي أول في شركة جون دير، حيث يُطوّر نماذج تعلم عميق للإدراك باستخدام بيانات الليدار والصورة (RGB) في أنظمة حرجة للسلامة وتعمل في الزمن الحقيقي. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن، مع أطروحة حول تحسين رؤية الحاسوب والشبكات العصبية العميقة المكانية-الزمنية، ويحمل أيضًا تخصصًا فرعيًا في الرياضيات. تم الاستشهاد بأبحاث مايكل من قبل باحثين في ديب مايند، جوجل، ميتا، مايكروسوفت، وOpenAI، من بين آخرين، كما فاز ورقة \(batter\|pitcher\)2vec الخاصة به بجائزة في مؤتمر MIT Sloan Sports Analytics لعام 2018. كما ساهم برمجيًا في scikit\-learn وApache Solr، وحظيت مستودرات GitHub الخاصة به—التي تلقّت مجتمعة أكثر من 2\,100 نجمة—بأن تكون نقطة انطلاق لأكواد بحثية وإنتاجية في العديد من المنظمات المختلفة. **MothBox: جهاز رصد حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية مفتوحة المصدر مثيرة، تُسمى Mothbox. يعد Mothbox مشروعًا فائزًا بجائزة لمراقبة الحشرات على نطاق واسع من أجل التنوع البيولوجي. وهو جهاز منخفض التكلفة تم تطويره في الغابات الاستوائية القاسية ببنما، ويُجري صورًا عالية الدقة جدًا ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نُطوّر نسخة جديدة قابلة للتصنيع لتعميم هذه الأداة المهمة عالميًا. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يُصمّم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة كرتون نتورك، IDEO، ومعهد سميثسونيان، ودرّس كأستاذ مساعد في جامعة سنغافورة الوطنية، وتحولت أبحاثه إلى برنامج تلفزيوني (مضحك) يُسمى "اختراق البرية"، تم توزيعه عبر شبكات ديسكفري. حاليًا، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس ورشة العمل الميدانية، مختبرات Digital Naturalism. في غابة مطيرة في جامبوا ببنما، يدمج Dinalab بين العمل الميداني البيولوجي والصناعة التكنولوجية مع مجتمع من العلماء والفنانين والمهندسين ومُنقذي الحيوانات المحليين والدوليين. وحاليًا، يعمل كأستاذ مشارك مستشار للطلاب في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من أسلوب جديد لمعالجة المهام، مستفيدة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب أو عبر التعديل الدقيق (fine-tuning). على وجه التحديد، سأتناول بحثًا مشتركًا حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء المهمة الصعبة لتحديد موقع الاستعلامات البصرية في مقاطع فيديو طويلة. للتخلص من الحاجة إلى تدريب خاص بالمهمة والتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج رؤية مُدرّبة مسبقًا. كما سأناقش بحثًا مشتركًا حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على المطالبات التي تتطلب فهمًا شاملاً مكانيًا-زمانيًا: تواجه النماذج الكبيرة متعددة الوسائط صعوبة في الإجابة على المطالبات التي تشير إلى 1) البيئة بأكملها التي يمكن لوكيل مزود بـ MLLM العمل فيها؛ وفي نفس الوقت تشير أيضًا إلى 2) الإجراءات الأخيرة التي حدثت للتو ومُشفّرة في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني-الزماني مهم للوكلاء العاملين في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات وتعديل دقيق لنموذج MLLM مزود بمشعّات لتحسين الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [أليكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شامبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب. حصل على بكالوريوس ودبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. بعد ذلك، انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تتمحور اهتماماته البحثية حول الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ورؤية الحاسوب، حيث شارك في تأليف العديد من الأوراق العلمية حول فهم السيناريوهات، وخوارزميات الاستدلال والتعلم، والتعلم العميق، وتجهيز الصور واللغة، والنماذج التوليدية. حصلت أطروحته للدكتوراه على ميدالية ETH، وفاز بحث فريقه بجائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تحولًا في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي أن يكتشف أمراض النباتات وأضرار الآفات في وقت مبكر بما يكفي لصنع فرق؟ يُظهر هذا الحديث كيف يُحدد كشف الشذوذ مشكلات المحاصيل ويُحللها باستخدام صحة أوراق القهوة كمثال أساسي. سنبدأ بالنظرية الأساسية، ثم نُحلل كيف تكتشف هذه النماذج صدأ الأوراق وأضرار العُثّ في الصور. تشمل الجلسة سير عمل عمليًا شاملاً باستخدام أداة FiftyOne مفتوحة المصدر للرؤية الحاسوبية، تغطي تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وتصور النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وخبرة عملية في تطبيق هذه التقنيات على التحديات الزراعية وقطاعات أخرى. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. وقد شرعت منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا في تطوير تقنيات هندسية متكاملة جديدة، تتركز أساسًا في مجالات الرؤية الحاسوبية، والروبوتات، والتعلم الآلي المطبقة على الزراعة.