انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى متحدثين خبراء حول أحدث التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **الموقع** افتراضي. [سجّل الدخول إلى Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع من أجل الإدراك في العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج إدراك قوية للروبوتات والاستقلالية وجود مجموعات بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وتصنيف سحب النقاط الليدارية من العالم الحقيقي بكميات كبيرة عملية مكلفة وجهدة، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع يُنتج مجموعات بيانات واقعية ومُصنَّفة بالكامل مع الحد الأدنى من الجهد البشري في التصنيف. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط فحوصات الخلفية (مثل الحقول، الطرق، مواقع البناء) وفحوصات الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise توليد عدد كبير تآزريًا من مشاهد التدريب المتنوعة. يتضمن الخط الأنابيب أربع خطوات: (1) جمع فحوصات ليدار واسعة النطاق للخلفية، (2) تسجيل فحوصات عالية الدقة لكائنات الهدف في ظروف مضبوطة، (3) إدخال الكائنات في الخلفيات مع وضع وحجب يتماشيان مع القوانين الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها باستخدام Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتصنيف اليدوي مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل أيضًا مرنة—تسمح للممارسين بسهولة التوسع إلى فئات أو نطاقات كائنات جديدة عن طريق استبدال فحوصات الخلفية أو الكائنات الجديدة. بالنسبة لممارسي تعلم الآلة العاملين في مجال الروبوتات، المركبات المستقلة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise طريقًا عمليًا نحو توسيع بيانات التدريب دون توسيع التكاليف. ويُغلق هذه الفجوة بين المحاكاة والأداء في العالم الحقيقي، مما يتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألْكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي في تعلم الآلة في شركة John Deere\، حيث يطوّر نماذج التعلّم العميق للإدراك باستخدام الليدار والصور RGB في أنظمة تتطلب السلامة\، وتعمل في الزمن الحقيقي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة الزمكانية\، كما يمتلك تخصصًا فرعيًا دراسيًا متقدمًا في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، وكانت ورقة \(batter\|pitcher\)2vec الخاصة به فائزة بجائزة في مؤتمر MIT Sloan Sports Analytics Conference عام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وقد تلقّت مستودرات GitHub الخاصة به—which have collectively received over 2\,100 stars—استُخدمت كنقاط بداية لأغراض البحث والإنتاج في العديد من المؤسسات المختلفة\. **MothBox: جهاز رصد حشرات منخفض التكلفة، مفتوح المصدر، وآلي** سيتحدث الدكتور آندي كوتميير عن تصميم أداة علمية جديدة ومثيرة مفتوحة المصدر، وهي Mothbox. مشروع Mothbox هو مشروع فائز بجائزة لمراقبة واسعة النطاق للحشرات من حيث التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويقوم بتصوير صور فائقة الدقة ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات الحشرية ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نطوّر نسخة جديدة قابلة للإنتاج لمشاركة هذه الأداة المهمة في جميع أنحاء العالم. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كوتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل Cartoon Network وIDEO وSmithsonian، ودرّس كأستاذ مساعد في جامعة سنغافورة الوطنية، وحتى تحولت إحدى أبحاثه إلى سلسلة تلفزيونية (مضحكة) بعنوان "Hacking the Wild"، تم توزيعها بواسطة Discovery Networks. حالياً، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس مختبر الحرف الرقمية (Digital Naturalism Laboratories)، وهو مساحة إبداعية مرتبطة بمحطة ميدانية. في غابة الأمطار في جامبوا ببنما، يدمج Dinalab العمل الميداني البيولوجي مع الصناعة التكنولوجية ضمن مجتمع من العلماء والفنيين والمهندسين ومحسنّي الحيوانات المحليين والدوليين. ويشغل حاليًا منصب أستاذ مشارك مستشار للطلاب في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب (zero-shot) أو عبر الضبط الدقيق (fine-tuning). على وجه التحديد، سأتناول عملًا مشتركًا حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلامات البصرية في مقاطع فيديو طويلة. من أجل التخلص من الحاجة إلى تدريب مخصص للمهمة ومعالجة مقاطع الفيديو الطويلة بكفاءة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج بصرية مُدرّبة مسبقًا. كما سأناقش عملًا مشتركًا حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الاستعلامات التي تتطلب فهمًا شاملاً مكانياً وزمنياً: فالنماذج MLLMs تواجه صعوبة في الإجابة على استعلامات تشير إلى 1) بيئة كاملة يمكن لوكيل مزوّد بنموذج MLLM العمل فيها؛ وفي الوقت نفسه تشير أيضًا إلى 2) أفعال حدثت للتو وتم ترميزها في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني والزماني مهم للوكلاء الذين يعملون في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات وضبط نموذج MLLM مزوّد بمشعّات (projectors) لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شامبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على بكالوريوس ودبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيوريخ عام 2014. وبعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تشمل اهتماماته البحثية مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية في مواضيع تشمل فهم السيناريوهات، وخوارزميات الاستنتاج والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. وحازت أطروحته للدكتوراه على ميدالية ETH، كما تم منح بحث فريقه جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ ثورة في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات في وقت مبكر بما يكفي لإحداث فرق حقيقي؟ يوضح هذا الحديث كيف يقوم كشف الشذوذ بتحديد وتحديد مواقع مشكلات المحاصيل باستخدام صحة أوراق البن كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم نفحص كيف تقوم هذه النماذج بكشف الصدأ وأضرار المنّاج في صور الأوراق. تشمل الجلسة سير عمل شاملاً عمليًا باستخدام مجموعة أدوات الرؤية الحاسوبية مفتوحة المصدر FiftyOne، وتغطي تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وتصور النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، بالإضافة إلى خبرة عملية في تطبيق هذه الأساليب على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية وتعلم الآلة، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. تعمل على تطوير تقنيات هندسية متكاملة جديدة، بشكل أساسي في مجالات الرؤية الحاسوبية، والروبوتات، وتعلم الآلة المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.