انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى متحدثين خبراء حول أحدث التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **الموقع** افتراضي. [سجّل الدخول عبر زووم.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية بيانات ضخمة ومتنوعة ثلاثية الأبعاد. لكن جمع وتصنيف سحب نقاط ليدار من العالم الحقيقي على نطاق واسع أمر مكلف ويتطلب وقتًا طويلاً، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم مشروع Paved2Paradise بديلًا اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع لإنتاج بيانات واقعية ومُصنفة بالكامل مع الحد الأدنى من جهود التصنيف اليدوي. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط عمليات مسح الخلفية (مثل الحقول، الطرق، مواقع البناء) ومسح الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise تصنيع مجموعة كبيرة جدًا من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار واسع النطاق للخلفية، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف مضبوطة، (3) إدخال الكائنات داخل الخلفيات مع وضعها وتداخلها بشكل متسق فيزيائيًا، (4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على البيانات المنتجة بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، حيث تحقق أداءً قويًا في الكشف مع جهد تصنيف يدوي أقل بكثير مقارنةً بجمع البيانات التقليدي. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل أيضًا مرنة – مما يسمح للممارسين بسهولة التوسع إلى فئات أو مجالات كائنات جديدة عن طريق استبدال مسحات الخلفية أو الكائنات. بالنسبة لممارسي تعلم الآلات العاملين في الروبوتات أو المركبات ذاتية القيادة أو أنظمة الإدراك الحرجة للسلامة، يسلط Paved2Paradise الضوء على مسار عملي نحو توسيع بيانات التدريب دون زيادة التكاليف. كما أنه يسد الفجوة بين المحاكاة والأداء في العالم الحقيقي، ويتيح التكرار الأسرع والنشر الأكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي للتعلم الآلي في شركة John Deere\، حيث يطور نماذج التعلم العميق لاستشعار الليدار والألوان (RGB) في أنظمة حرجة للسلامة وتعمل في الوقت الفعلي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية\، كما يمتلك تخصصًا فرعيًا في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، وكانت ورقته \(batter\|pitcher\)2vec فائزة بجائزة في مؤتمر MIT Sloan Sports Analytics Conference عام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وقد استُخدمت مستودرات GitHub الخاصة به—التي حصلت مجتمعة على أكثر من 2\,100 نجمة—كمواقع انطلاق لأغراض بحثية وتطويرية في العديد من المنظمات المختلفة\. **MothBox: جهاز رصد حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كويتمير عن تصميم أداة علمية جديدة ومثيرة ومفتوحة المصدر، وهي Mothbox. يُعد مشروع Mothbox مشروعًا فائزًا بجائزة لمراقبة الحشرات على نطاق واسع من أجل التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في الغابات الاستوائية الصعبة ببنما، ويقوم بالتقاط صور فائقة الدقة ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. وبعد آلاف الملاحظات على الحشرات ومئات عمليات النشر في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للتصنيع لتعميم هذه الأداة المهمة عالميًا. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتمير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة كرتون نتورك وIDEO ومؤسسة سميثسونيان، ودرّس كأستاذ متفرغ في الجامعة الوطنية السنغافورية، وحتى تحولت إحدى أبحاثه إلى سلسلة تلفزيونية (مضحكة) بعنوان "Hacking the Wild"، تم توزيعها بواسطة Discovery Networks. حالياً، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس مختبر للحرف اليدوية العلمية في الموقع، يُدعى Digital Naturalism Laboratories. في غابة الأمطار في جامبوا ببنما، يدمج Dinalab بين العمل الميداني البيولوجي والتصميم التكنولوجي ضمن مجتمع من العلماء والفنانين والمهندسين ومحسنّي الحيوانات المحليين والدوليين. كما يُقدم حاليًا الاستشارات للطلاب بصفته أستاذًا مرتبطًا في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أحدث الأبحاث المتعلقة بتمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب (zero-shot) أو عبر التعديل الدقيق (fine-tuning). على وجه التحديد، سأتناول العمل المشترك حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. للتخلي عن الحاجة إلى تدريب مخصص لكل مهمة ومعالجة مقاطع الفيديو الطويلة بكفاءة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج رؤية مسبقة التدريب. كما سأناقش العمل المشترك حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الطلبات التي تتطلب فهمًا شاملاً مكانياً-زمنياً: إذ تعاني النماذج متعددة الوسائط من صعوبة في الإجابة على طلبات تشير إلى 1) بيئة كاملة يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وفي نفس الوقت تشير أيضًا إلى 2) إجراءات حديثة حدثت للتو ومُرمَّزة في مقطع فيديو. إلا أن هذا الفهم الشامل المكاني-الزماني مهم للوكلاء العاملين في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات وتعديل نموذج MLLM مزوّد بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الحديثة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-แชมبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي والذكاء الاصطناعي التوليدي والرؤية الحاسوبية. حصل على بكالوريوس ودبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. بعد ذلك، انضم إلى جامعة تورونتو كزميل باحث حتى عام 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف عدد كبير من الأوراق العلمية حول فهم المشهد، وخوارزميات الاستنتاج والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. حصلت أطروحته للدكتوراه على ميدالية ETH، ونالت أبحاث فريقه جائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ ثورة في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي أن يكتشف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق حقيقي؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ مشكلات المحاصيل ويشخصها باستخدام صحة أوراق البن كمثال أساسي. سنبدأ بالنظرية الأساسية، ثم نحلل كيف تكشف هذه النماذج عن أضرار الصدأ والحفرة في صور الأوراق. تشمل الجلسة سير عمل شاملاً وعمليًا باستخدام أداة FiftyOne المفتوحة المصدر للرؤية الحاسوبية، تغطي إدارة مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري وتجريبي لكشف الشذوذ في الرؤية الحاسوبية، بالإضافة إلى خبرة عملية في تطبيق هذه الأساليب على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [باولا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية وتعلم الآلة، ولديها أكثر من 20 سنة من الخبرة في المجال التكنولوجي. وهي تعمل منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا على تطوير تقنيات هندسية متكاملة جديدة، تركز أساسًا على الرؤية الحاسوبية، والروبوتات، وتعلم الآلة المطبقة في الزراعة.