انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول أحدث التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **الموقع** افتراضي. [سجّل الدخول إلى Zoom.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية بيانات ضخمة ومتنوعة ثلاثية الأبعاد. ولكن جمع وترميز سحب ليدار من العالم الحقيقي على نطاق واسع أمر مكلف وجهد كبير، خاصة عندما تكون التصنيفات عالية الجودة ضرورية. يقدم Paved2Paradise بديلاً اقتصاديًا: خط أنابيب محاكاة ليدار قابل للتوسيع يُنتج بيانات واقعية ومُصنفة بالكامل مع الحد الأدنى من الجهد البشري في التصنيف. الفكرة الأساسية هي "تحليل الواقع" من خلال التقاط مسح الخلفيات (مثل الحقول، الطرق، مواقع البناء) ومسح الكائنات (مثل المركبات، الناس، الآلات) بشكل منفصل. من خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise تركيب عدد كبير من مشاهد التدريب المختلفة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح واسع النطاق لبيانات ليدار للخلفية، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف مضبوطة، (3) إدخال الكائنات في الخلفيات مع وضع وحجب يتماشى مع القوانين الفيزيائية، (4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة باستخدام بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتحقق أداءً قويًا في الكشف مع الحاجة إلى ترميز يدوي أقل بكثير مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فعالة من حيث التكلفة فحسب، بل مرنة أيضًا—تمكّن الممارسين من التوسع بسهولة إلى فئات أو مجالات كائنات جديدة عن طريق استبدال مسح الخلفية أو الكائنات بآخر جديد. بالنسبة لممارسي تعلم الآلة العاملين في مجالات الروبوتات، المركبات ذاتية القيادة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون زيادة التكاليف. وهو يسد الفجوة بين الأداء في المحاكاة والأداء في العالم الحقيقي، مما يتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس متقدم في تعلم الآلة في شركة John Deere\، حيث يطور نماذج تعلّم عميق للإدراك باستخدام بيانات الليدار والصورة (RGB) لأنظمة تتطلب السلامة وتُعالج في الزمن الحقيقي\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، وكان موضوع أطروحته تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية\، كما حصل على شهادة دراسات عليا في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، وكانت ورقة \(batter\|pitcher\)2vec الخاصة به فائزة بجائزة في مؤتمر MIT Sloan Sports Analytics Conference عام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وقد تلقى مستودعات GitHub الخاصة به—التي تلقت مجتمعة أكثر من 2\,100 نجمة—دعمًا كنقطة بداية لأبحاث وأكواد إنتاجية في العديد من المنظمات المختلفة\. **MothBox: جهاز رصد آفات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كويتميير عن تصميم أداة علمية مفتوحة المصدر جديدة ومثيرة، Mothbox. مشروع Mothbox هو مشروع فائز بجوائز لمراقبة واسعة النطاق للحشرات من أجل التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في الغابات الصعبة في بنما، ويقوم بتصوير صور فائقة الدقة ثم يقوم بتحديد تلقائي لمستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات على الحشرات ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للتصنيع لتعميم هذه الأداة المهمة عالميًا. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته في دراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة الكرتون، IDEO، ومعهد سميثسونيان، ودرّس كبروفيسور في مسار دائم في الجامعة الوطنية السنغافورية، وحتى تم تحويل بحثه إلى برنامج تلفزيوني (طرifo) بعنوان "Hacking the Wild"، تم توزيعه عبر Discovery Networks. حالياً، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس مختبر صناعة محطة حقلية، Digital Naturalism Laboratories. في غابة الأمطار في جامبوا، بنما، يدمج Dinalab بين العمل الميداني البيولوجي والحرف التكنولوجية مع مجتمع من العلماء والفنانين والمهندسين ومُنقذي الحيوانات المحليين والدوليين. وهو حاليًا يستشار أيضًا كأستاذ مشارك في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** سمحت النماذج الأساسية بطريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب ومن خلال الضبط الدقيق. على وجه التحديد، سأناقش العمل المشترك حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة وهي تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. لإزالة الحاجة إلى تدريب مخصص للمهمة وللتعامل بكفاءة مع مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مشتق من نماذج بصرية مسبقة التدريب. كما سأناقش العمل المشترك حول تمكين نماذج اللغة الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الأوامر التي تتطلب فهمًا شاملاً مكانياً-زمنياً: فالنماذج MLLMs تعاني من صعوبة في الإجابة على أوامر تشير إلى 1) البيئة الكاملة التي يمكن لوكيل مزود بـ MLLM العمل فيها؛ وفي نفس الوقت تشير أيضًا إلى 2) الإجراءات الأخيرة التي حدثت للتو وتم ترميزها في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني-الزماني مهم للوكلاء الذين يعملون في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات والضبط الدقيق لنموذج MLLM مجهز بمشعات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الأخيرة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شامبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على درجة البكالوريوس والدبلوم في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. بعد ذلك انضم إلى جامعة تورنتو كزميل باحث حتى عام 2016. تتركز اهتماماته البحثية في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية حول مواضيع في فهم المشهد، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. تم منح أطروحته للدكتوراه وسام ETH، وفاز بحث فريقه بجائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ تغييرًا في التصنيع والمراقبة، لكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي اكتشاف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ مشكلات المحاصيل ويشخصها باستخدام صحة أوراق القهوة كمثال رئيسي. سنبدأ بالنظرية الأساسية، ثم نحلل كيفية اكتشاف هذه النماذج لأضرار الصدأ والحفر في صور الأوراق. تشمل الجلسة سير عمل شاملة عملية باستخدام أدوات FiftyOne المفتوحة المصدر للرؤية الحاسوبية، وتغطي تنقيح مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، بالإضافة إلى خبرة عملية في تطبيق هذه الأساليب على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [باولا راموس](https://www.linkedin.com/in/paula-ramos-phd/) حاصلة على درجة الدكتوراه في الرؤية الحاسوبية وتعلم الآلة، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. تعمل على تطوير تقنيات هندسية متكاملة جديدة، خاصة في مجالات الرؤية الحاسوبية، والروبوتات، وتعلم الآلة المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.