تصفح جميع التصنيفات
···
تسجيل الدخول / التسجيل
15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)63785782044033110
مجاني
المفضلة
مشاركة

15 أكتوبر - الذكاء الاصطناعي البصري في الزراعة (اليوم الأول)

addressF5HW+FGX, Vaiaku, Tuvalu

تمت ترجمة بعض المحتوى تلقائيًا.عرض الأصل
وصف

انضم إلينا في اليوم الأول من سلسلة الفعاليات الافتراضية للاستماع إلى خبراء حول أحدث التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **الموقع** افتراضي. [سجّل الدخول عبر زووم.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية بيانات ضخمة ومتنوعة ثلاثية الأبعاد. ولكن جمع وتصنيف سحب نقاط ليدار من العالم الحقيقي على نطاق واسع أمر مكلفٌ للغاية ويستغرق وقتًا طويلاً، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم مشروع Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع يُنتج بيانات واقعية ومصنفة بالكامل مع الحد الأدنى من الجهد البشري في التصنيف. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط فحوص الخلفية (مثل الحقول، الطرق، مواقع البناء) وفحوص الكائنات (مثل المركبات، الأشخاص، الآلات) بشكل منفصل. وبدمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise تصنيع عدد كبير توفيقي من مشاهد التدريب المختلفة. يتضمن الخط الأنابيب أربع خطوات: (1) جمع فحوص ليدار واسعة النطاق للخلفية، (2) تسجيل فحوص عالية الدقة لكائنات الهدف في ظروف مضبوطة، (3) إدخال الكائنات داخل الخلفيات مع وضع وتحجب يتماشيان مع القوانين الفيزيائية، (4) محاكاة هندسة ليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها بواسطة Paved2Paradise تنتقل بكفاءة إلى العالم الحقيقي، وتُحقق أداءً قويًا في الكشف مع حاجة أقل بكثير للتسمية اليدوية مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فقط فعالة من حيث التكلفة، بل مرنة أيضًا — مما يتيح للممارسين توسيعها بسهولة إلى فئات أو مجالات كائنات جديدة من خلال استبدال فحوص الخلفية أو الكائنات. بالنسبة لممارسي التعلّم الآلي العاملين في الروبوتات أو المركبات المستقلة أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise طريقًا عمليًا نحو توسيع بيانات التدريب دون توسيع التكاليف. إنه يسد الفجوة بين المحاكاة والأداء في العالم الحقيقي، ما يمكّن من التكرار الأسرع والنشر الأكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألكورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي للتعلّم الآلي في شركة John Deere\، حيث يطوّر نماذج التعلّم العميق لأنظمة الاستشعار باستخدام ليدار والصور الملونة (RGB) في أنظمة تتطلب السلامة وتكون فورية\. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن\، وكان موضوع أطروحته تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية\، كما يمتلك تخصصًا فرعيًا في الرياضيات\. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind\، Google\، Meta\، Microsoft\، وOpenAI\، من بين آخرين\، كما فاز ورقته \(batter\|pitcher\)2vec بجائزة في مؤتمر MIT Sloan Sports Analytics Conference لعام 2018\. كما ساهم برمجيًا في scikit\-learn وApache Solr\، وقد تلقّت مستودعات GitHub الخاصة به—التي تجمعت لها أكثر من 2\,100 نجمة—استخدامات كنقاط بداية لأكواد بحثية وإنتاجية في العديد من المؤسسات\. **MothBox: جهاز مراقبة حشرات منخفض التكلفة ومفتوح المصدر** سيتحدث الدكتور آندي كوتميير عن تصميم أداة علمية جديدة ومثيرة مفتوحة المصدر، وهي Mothbox. إن Mothbox مشروع فائز بجوائز لمراقبة واسعة النطاق للحشرات من أجل التنوع البيولوجي. إنها جهاز منخفض التكلفة تم تطويره في الغابات الاستوائية الصعبة في بنما، ويقوم بتصوير صور فائقة الدقة ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات الحشرية ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للتصنيع لتعميم هذه الأداة المهمة عالميًا. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كوتميير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل Cartoon Network و IDEO وSmithsonian، ودرّس كأستاذ محاضر في جامعة سنغافورة الوطنية، وحتى تم تحويل بحثه إلى سلسلة تلفزيونية (مضحكة) بعنوان "Hacking the Wild"، تم توزيعها عبر Discovery Networks. في الوقت الحالي، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، ومؤخرًا أسس ورشة عمل مخبرية ميدانية تُدعى Digital Naturalism Laboratories. في غابة الأمطار في جامبوا ببنما، يدمج Dinalab العمل الميداني البيولوجي مع الصناعة التكنولوجية ضمن مجتمع من العلماء والفنيين والفنانين والمهندسين ومحسنّي الحيوانات المحليين والدوليين. وحاليًا، يعمل كأستاذ مشارك في جامعة واشنطن، حيث يستشار من قبل الطلاب. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من أسلوب جديد لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أبحاثًا حديثة حول تمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب ومن خلال التعديل الدقيق (fine-tuning). وعلى وجه التحديد، سأتناول بحثًا مشتركًا حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلامات البصرية في مقاطع الفيديو الطويلة. لإزالة الحاجة إلى تدريب مخصص للمهمة ومعالجة مقاطع الفيديو الطويلة بكفاءة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج الرؤية المدربة مسبقًا. سأناقش أيضًا بحثًا مشتركًا حول تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) من الإجابة الصحيحة على الطلبات التي تتطلب فهمًا شاملاً مكانياً-زمنياً: حيث تواجه النماذج متعددة الوسائط صعوبة في الإجابة على طلبات تشير إلى 1) بيئة كاملة يمكن لوكيل مزوّد بنموذج MLLM العمل فيها؛ وفي نفس الوقت تشير أيضًا إلى 2) إجراءات حدثت للتو وتم ترميزها في مقطع فيديو. إلا أن هذا الفهم الشامل المكاني-الزماني مهم للوكلاء العاملين في العالم الحقيقي. ويتضمن حلنا تطوير خط أنابيب مخصص لجمع البيانات وتعديل دقيق لنموذج MLLM مزوّد بمشعّات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للمشاهدات الأخيرة. *عن المتحدث* [أليكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شامبين، يعمل مع طلاب موهوبين في مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، ومواضيع الرؤية الحاسوبية. حصل على بكالوريوس ودبلومه في الهندسة الكهربائية وتكنولوجيا المعلومات من الجامعة التقنية في ميونيخ عامي 2006 و2008 على التوالي، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ في عام 2014. بعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تتمحور اهتماماته البحثية حول الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق البحثية حول مواضيع فهم المشهد، وخوارزميات الاستنتاج والتعلم، والتعلم العميق، وتجهيز الصور واللغة، والنماذج التوليدية. حصلت أطروحته للدكتوراه على ميدالية ETH، وفاز بحث فريقه بجائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ ثورة في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي أن يكتشف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لصنع فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ ويحلل مشكلات المحاصيل باستخدام صحة أوراق البن كمثالنا الأساسي. سنبدأ بالنظرية الأساسية، ثم ندرس كيف تكتشف هذه النماذج صدأ الأوراق وأضرار المنجر في صور الأوراق. تشمل الجلسة سير عمل شاملة عملية باستخدام أدوات FiftyOne مفتوحة المصدر للرؤية الحاسوبية، وتغطي تنسيق مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وعرض النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية وتجربة عملية في تطبيق هذه التقنيات على التحديات الزراعية وحقول أخرى. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية والتعلم الآلي، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. تعمل منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا على تطوير تقنيات هندسية متكاملة جديدة، تركز أساسًا على الرؤية الحاسوبية، والروبوتات، والتعلم الآلي المطبّق على الزراعة.

المصدر:  meetup عرض المنشور الأصلي

موقع
F5HW+FGX, Vaiaku, Tuvalu
عرض الخريطة

meetup

قد يعجبك أيضا

كوكيز
إعدادات الكوكيز
تطبيقاتنا
Download
حمِّل من
APP Store
Download
احصل عليه من
Google Play
© 2025 Servanan International Pte. Ltd.