انضم إلينا في اليوم الأول من سلسلة فعاليات افتراضية للاستماع إلى متحدثين خبراء حول آخر التطورات في مجال التقاطع بين الذكاء الاصطناعي البصري والزراعة. **التاريخ والوقت** 15 أكتوبر الساعة 9 صباحًا بالتوقيت الهادئ **المكان** افتراضي. [سجّل الدخول عبر زووم.](https://voxel51.com/events/visual-ai-in-agriculture-october-15-2025) **Paved2Paradise: محاكاة ليدار قابلة للتوسيع لإدراك العالم الحقيقي** غالبًا ما يتطلب تدريب نماذج الإدراك القوية للروبوتات والاستقلالية وجود مجموعات بيانات ثلاثية الأبعاد ضخمة ومتنوعة. ولكن جمع وتصنيف سحب النقاط الليدارية من العالم الحقيقي بحجم كبير أمر مكلفٌ للغاية ويستغرق وقتًا طويلاً، خاصة عند الحاجة إلى تسميات عالية الجودة. يقدم مشروع Paved2Paradise بديلاً اقتصاديًا: وهو خط أنابيب محاكاة ليدار قابل للتوسيع يُنتج مجموعات بيانات واقعية ومصنفة بالكامل مع الحد الأدنى من الجهد البشري في التصنيف. الفكرة الأساسية هي "تحليل العالم الحقيقي" من خلال التقاط مسح خلفي منفصل (مثل الحقول، الطرق، مواقع البناء) ومسح كائنات منفصل (مثل المركبات، الأشخاص، الآلات). ومن خلال دمج هذين المصدرَين بذكاء، يمكن لـ Paved2Paradise تصنيع عدد كبير توفيقيًا من مشاهد التدريب المتنوعة. يتضمن خط الأنابيب أربع خطوات: (1) جمع مسح ليدار خلفي واسع النطاق، (2) تسجيل مسح عالي الدقة لكائنات الهدف في ظروف خاضعة للرقابة، (3) إدخال الكائنات إلى الخلفيات مع وضع وحجب يتماشى مع القوانين الفيزيائية، و(4) محاكاة هندسة الليدار لضمان الواقعية. أظهرت التجارب أن النماذج المدربة على بيانات تم إنشاؤها باستخدام Paved2Paradise تنتقل بشكل فعال إلى العالم الحقيقي، حيث تحقق أداءً قويًا في الكشف مع تقليل كبير في التصنيف اليدوي مقارنةً بجمع مجموعة البيانات التقليدية. هذه الطريقة ليست فقط فعالة من حيث التكلفة، بل مرنة أيضًا — مما يسمح للممارسين بسهولة التوسع إلى فئات أو نطاقات كائنات جديدة عن طريق استبدال مسح الخلفية أو الكائنات. بالنسبة لممارسي تعلم الآلات العاملين في الروبوتات، المركبات المستقلة، أو أنظمة الإدراك الحرجة للسلامة، يبرز Paved2Paradise مسارًا عمليًا نحو توسيع بيانات التدريب دون زيادة التكاليف. كما أنه يغلق الفجوة بين المحاكاة والأداء في العالم الحقيقي، مما يتيح تكرارًا أسرع ونشرًا أكثر موثوقية لنماذج الإدراك. *عن المتحدث* [مايكل أ. ألورن](https://www.linkedin.com/in/michaelaalcorn/) هو مهندس رئيسي للتعلم الآلي في شركة جون دير، حيث يطور نماذج التعلم العميق للإدراك باستخدام الليدار والصور ذات الألوان الثلاثة (RGB) لأنظمة حرجة للسلامة وتتطلب زمنًا حقيقيًا. حصل على درجة الدكتوراه في علوم الحاسوب من جامعة أوبرن، مع أطروحة حول تحسين الرؤية الحاسوبية والشبكات العصبية العميقة المكانية-الزمنية، وله أيضًا تخصص فرعي في الرياضيات. تم الاستشهاد بأبحاث مايكل من قبل باحثين في DeepMind، جوجل، ميتا، مايكروسوفت، وOpenAI، من بين آخرين، وكانت ورقة \(batter\|pitcher\)2vec الخاصة به فائزة بجائزة في مؤتمر MIT Sloan Sports Analytics لعام 2018. كما ساهم برمجيًا في scikit\-learn وApache Solr، وقد تلقى مستودعات GitHub الخاصة به التي بلغت مجتمعة أكثر من 2\,100 نجمة، دعمًا كنقطة بداية لأبحاث وشفرات إنتاجية في العديد من المنظمات المختلفة. **MothBox: جهاز رصد حشرات منخفض التكلفة، مفتوح المصدر، وآلي** سيتحدث الدكتور آندي كويتماير عن تصميم أداة علمية جديدة ومثيرة مفتوحة المصدر، وهي Mothbox. يعد مشروع Mothbox مشروعًا فائزًا بجائزة لمراقبة واسعة النطاق للحشرات من أجل التنوع البيولوجي. إنه جهاز منخفض التكلفة تم تطويره في غابات بنما القاسية، ويقوم بالتقاط صور عالية الدقة جدًا ثم يقوم تلقائيًا بتحديد مستويات التنوع البيولوجي في الغابات والزراعة. بعد آلاف الملاحظات الحشرية ومئات النشرات في بنما، بيرو، المكسيك، الإكوادور، والولايات المتحدة، نحن الآن نعمل على تطوير نسخة جديدة قابلة للإنتاج لتوزيع هذه الأداة المهمة عالميًا. سنناقش تطوير هذا الجهاز في غابات بنما وأهميته لدراسة التنوع البيولوجي عالميًا. *عن المتحدث* يصمم الدكتور آندي كويتماير طرقًا جديدة للتفاعل مع العالم الطبيعي. عمل مع منظمات كبيرة مثل شبكة كرتون نتورك، IDEO، ومعهد سميثسونيان، ودرّس كأستاذ محاضر في الجامعة الوطنية السنغافورية، وحتى تم تحويل بحثه إلى سلسلة تلفزيونية (مضحكة) بعنوان "Hacking the Wild"، تم توزيعها بواسطة Discovery Networks. حالياً، يقضي معظم وقته في العمل التطوعي مع منظمات صغيرة، وقام مؤخرًا بتأسيس مختبر صناعة محطة ميدانية، يُعرف باسم Digital Naturalism Laboratories. في غابة الأمطار في جامبوا ببنما، يدمج Dinalab العمل الميداني البيولوجي مع الصناعة التكنولوجية ضمن مجتمع من العلماء والفنانين والمهندسين ومتخصصي إعادة تأهيل الحيوانات المحليين والدوليين. وحاليًا، يعمل أيضًا كأستاذ متعاون مستشار للطلاب في جامعة واشنطن. **النماذج الأساسية للذكاء الاصطناعي البصري في الزراعة** لقد مكّنت النماذج الأساسية من طريقة جديدة لمعالجة المهام، وذلك بالاستفادة من القدرات الناشئة بطريقة بدون تدريب (zero-shot). في هذا الحديث، سأناقش أحدث الأبحاث المتعلقة بتمكين الذكاء الاصطناعي البصري بطريقة بدون تدريب أو من خلال التعديل الدقيق (fine-tuning). وعلى وجه التحديد، سأتناول العمل المشترك حول RELOCATE، وهو معيار بسيط لا يتطلب تدريبًا مصممًا لأداء مهمة صعبة تتمثل في تحديد موقع الاستعلام البصري في مقاطع فيديو طويلة. لكي نتجنب الحاجة إلى تدريب مخصص لكل مهمة ونعالج بكفاءة مقاطع الفيديو الطويلة، يستفيد RELOCATE من تمثيل قائم على المناطق مستمد من نماذج رؤية مسبقة التدريب. كما سأناقش أيضًا العمل المشترك على تمكين نماذج اللغات الكبيرة متعددة الوسائط (MLLMs) للإجابة الصحيحة على الطلبات التي تتطلب فهمًا شاملاً مكانياً-زمنياً: إذ تواجه النماذج متعددة الوسائط صعوبة في الإجابة على طلبات تشير إلى 1) بيئة كاملة يمكن لوكيل مزود بنموذج MLLM العمل فيها؛ وفي نفس الوقت تشير أيضاً إلى 2) أفعال حدثت حديثًا ومشفرة في مقطع فيديو. ومع ذلك، فإن هذا الفهم الشامل المكاني-الزماني مهم للوكلاء الذين يعملون في العالم الحقيقي. يشمل حلنا تطوير خط أنابيب مخصص لجمع البيانات والتعديل الدقيق لنموذج MLLM مجهز بمشعاعات لتحسين كل من الفهم المكاني للبيئة والفهم الزمني للملاحظات الأخيرة. *عن المتحدث* [ألكس شوينغ](https://www.linkedin.com/in/alexander-s-0a049258/) هو أستاذ مشارك في جامعة إلينوي في أوربانا-شمباين، يعمل مع طلاب موهوبين في موضوعات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية. حصل على بكالوريوس الهندسة الكهربائية وهندسة المعلومات من الجامعة التقنية في ميونيخ عام 2006، وعلى الدبلوم عام 2008، وحصل على درجة الدكتوراه في علوم الحاسوب من ETH زيورخ عام 2014. وبعد ذلك انضم إلى جامعة تورونتو كزميل ما بعد الدكتوراه حتى عام 2016. تشمل اهتماماته البحثية مجالات الذكاء الاصطناعي، والذكاء الاصطناعي التوليدي، والرؤية الحاسوبية، حيث شارك في تأليف العديد من الأوراق العلمية حول مواضيع في فهم السيناريوهات، وخوارزميات الاستدلال والتعلم، والتعلم العميق، ومعالجة الصور واللغة، والنماذج التوليدية. حصلت أطروحته للدكتوراه على ميدالية ETH، وتم تكريم بحث فريقه بجائزة NSF CAREER. **خارج المختبر: كشف الشذوذ في العالم الحقيقي للرؤية الحاسوبية الزراعية** يُحدث كشف الشذوذ ثورة في التصنيع والمراقبة، ولكن ماذا عن الزراعة؟ هل يمكن للذكاء الاصطناعي فعلاً اكتشاف أمراض النباتات وأضرار الآفات مبكرًا بما يكفي لتحقيق فرق؟ يوضح هذا الحديث كيف يحدد كشف الشذوذ ويحلل مشكلات المحاصيل باستخدام صحة أوراق القهوة كمثال أساسي. سنبدأ بالنظرية الأساسية، ثم ندرس كيف تكتشف هذه النماذج أضرار الصدأ والحفر في صور الأوراق. تشمل الجلسة تدفق عمل شامل عمليًا باستخدام أدوات FiftyOne مفتوحة المصدر للرؤية الحاسوبية، ويتناول تنظيم مجموعة البيانات، واستخراج القطع، وتدريب النموذج، وتصور النتائج. ستحصل على فهم نظري لكشف الشذوذ في الرؤية الحاسوبية، بالإضافة إلى خبرة عملية في تطبيق هذه الأساليب على التحديات الزراعية وغيرها من المجالات. *عن المتحدث* [بولينا راموس](https://www.linkedin.com/in/paula-ramos-phd/) تحمل درجة الدكتوراه في الرؤية الحاسوبية وتعلم الآلة، ولديها أكثر من 20 عامًا من الخبرة في المجال التكنولوجي. تعمل على تطوير تقنيات هندسية متكاملة جديدة، خصوصًا في مجالات الرؤية الحاسوبية، والروبوتات، وتعلم الآلة المطبقة على الزراعة، منذ أوائل العقد الأول من القرن الحادي والعشرين في كولومبيا.